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There is no unmeasured con-
founder U , i.e. U cannot effect
D and Y (yellow arrows) simul-
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The instrument Z influences Y
only through D and it is inde-
pendent of U , that is absence of
the red arrows.
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R2-Calculus

In a linear regression Y = Xβ + ε, R2
Y∼X is the proportion of variance

in Y that is explained by the model.

R2-Calculus
Let Y ∈ R, X ∈ Rd, Z ∈ Rk and W ∈ Rl be random vectors

I R2
Y∼X = 1− var(Y−Xβ)

var(Y ) , where β is the regression coefficient

I R2
Y∼X|Z =

R2
Y∼X+Z−R

2
Y∼Z

1−R2
Y∼Z

I var(Y ⊥X,Z)
var(Y ⊥Z)

= 1−R2
Y∼X|Z

I RY∼X|Z = corr(Y ⊥Z , X⊥Z), for X ∈ R

I RY∼X|Z,W =
RY∼X|Z−RY∼W |ZRX∼W |Z√

1−R2
Y∼W |Z

√
1−R2

X∼W |Z
, for X,W ∈ R.

I f2Y∼X|Z =
R2

Y∼X|Z
1−R2

Y∼X|Z
; fY∼X|Z =

RY∼X|Z√
1−R2

Y∼X|Z
, for X ∈ R
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Sensitivity Analysis - Linear Regression
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Linear regression model:

Y = Dβ + Uγ + λTX + ε

Bias in the β-estimate when excluding U :

bias = RY∼U |D,X fD∼U |X
sd(Y ⊥D,X)

sd(D⊥X)

We can find a range for the bias by reasoning about RY∼U |D,X and
fD∼U |X . For instance, if a researcher believes R2

D∼U ≤ 0.5R2
D∼X , we

apply the rules of the R2-calculus and find the bound

|fD∼U |X | ≤

√
0.5f2D∼X

1− 0.5f2D∼X
.
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Sensitivity Analysis - Instrumental Variables
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Linear Instrumental Variables model:

D = Zθ + Uγ + λTX + εD

Y = Dβ + Uγ̃ + λ̃TX + Zθ̃ + εY

The estimate

βIV =
cov(Z, Y )

cov(Z,D)

is unbiased if the instrument Z ∈ R influences Y only through D and
Z ⊥⊥ U , even in the presence of an unmeasured confounder.



Sensitivity Analysis - Instrumental Variables

Bias under violation of the assumptions (dropping conditioning on X):

bias =

 RY∼U|D,Z fU∼Z

fD∼Z

√
1−R2

D∼U|Z

+
RY∼Z|D,U

√
1−R2

Y∼U|D

RD∼Z

√
1−R2

Z∼U|D

√
1−R2

Y∼Z|D

 sd(Y ⊥D,Z)

sd(D⊥Z)

The values RU∼Z and RY∼Z|D,U correspond to the IV assumptions.
For sensitivity analysis, we need a bound on one additional parameter,
for example RY∼U |D,Z .
The unknown terms in the bias are implicitely specified by

RY∼U |D,Z =
RY∼U |D −RY∼Z|D RZ∼U |D√
1−R2

Y∼Z|D

√
1−R2

Z∼U |D

RY∼Z|D,U =
RY∼Z|D −RY∼U |D RZ∼U |D√
1−R2

Y∼U |D

√
1−R2

Z∼U |D

fZ∼U |D = fZ∼U

√
1−R2

D∼Z
1−R2

D∼U |Z
−RZ∼DfD∼U |Z
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Sensitivity Analysis - K-class estimation

D

U

YZ

X

K-class estimate for a linear IV model:

βκ =
cov(D⊥X , Y ⊥X)− κ cov(D⊥Z,X , Y ⊥Z,X)

var(D⊥X)− κ var(D⊥Z,X)

Interpolation:

I κ = 1: IV estimate

I κ = 0: regression estimate of Y ∼D+X

I κ→−∞: regression estimate of Y ∼D+X+Z

Bias under violation of IV and regression assumptions:

bias =

[
fY∼Z|D,X RD∼Z|X

1− κ (1−R2
D∼Z|X)

+RY∼U |D,Z,X fD∼U |Z,X

]
sd(Y ⊥D,Z,X)

sd(D⊥Z,X)

It suffices to specify bounds for two quantities: RY∼U |D,Z,X and
fD∼U |Z,X . This extends to multiple independent instruments.
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Outlook

Short-term:

I Multiple unmeasured confounders: An upper bound for the bias in
linear regression is already known.

I “Combination” of the bounds for different sensitivity parameters:
Do we want to allow simultaneous worst-case violations for
multiple parameters?

I Application to real-world data, e.g. in econometrics

Long-term:

I Computer algebra system for the R2-calculus

I Properties of R2-calculus, e.g. what is the minimum number of
sensitivity parameters for a given model?

I Generalisation of R2-values
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