Sensitivity Analysis with the R²-Calculus

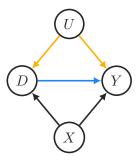
Tobias Freidling^{1,2}, Qingyuan Zhao^{1,2}

¹DPMMS, University of Cambridge

²Cantab Capital Institute for the Mathematics of Information

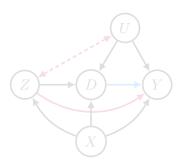
Untestable Assumptions

Regression



There is no unmeasured confounder U, i.e. U cannot effect D and Y (yellow arrows) simultaneously.

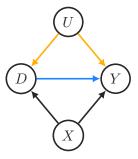
Instrumental Variables



The instrument Z influences Y only through D and it is independent of U, that is absence of the red arrows.

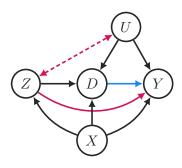
Untestable Assumptions

Regression



There is no unmeasured confounder U, i.e. U cannot effect D and Y (yellow arrows) simultaneously.

Instrumental Variables



The instrument Z influences Y only through D and it is independent of U, that is absence of the red arrows.

R²-Calculus

In a linear regression $Y=X\beta+\varepsilon$, $R^2_{Y\sim X}$ is the proportion of variance in Y that is explained by the model.

R²-Calculus

Let $Y \in \mathbb{R}$, $X \in \mathbb{R}^d$, $Z \in \mathbb{R}^k$ and $W \in \mathbb{R}^l$ be random vectors

- $ho R_{Y \sim X}^2 = 1 rac{{
 m var}(Y X eta)}{{
 m var}(Y)}$, where eta is the regression coefficient
- $R_{Y \sim X|Z}^2 = \frac{R_{Y \sim X + Z}^2 R_{Y \sim Z}^2}{1 R_{Y \sim Z}^2}$
- $ightharpoonup R_{Y \sim X|Z} = \operatorname{corr}(Y^{\perp Z}, X^{\perp Z}), \text{ for } X \in \mathbb{R}$
- $R_{Y \sim X|Z,W} = \frac{R_{Y \sim X|Z} R_{Y \sim W|Z} R_{X \sim W|Z}}{\sqrt{1 R_{Y \sim W|Z}^2} \sqrt{1 R_{X \sim W|Z}^2}}, \text{ for } X, W \in \mathbb{R}$
- $f_{Y \sim X|Z}^2 = \frac{R_{Y \sim X|Z}^2}{1 R_{Y \sim X|Z}^2}; \quad f_{Y \sim X|Z} = \frac{R_{Y \sim X|Z}}{\sqrt{1 R_{Y \sim X|Z}^2}}, \text{ for } X \in \mathbb{R}$

R²-Calculus

In a linear regression $Y=X\beta+\varepsilon$, $R^2_{Y\sim X}$ is the proportion of variance in Y that is explained by the model.

R²-Calculus

Let $Y \in \mathbb{R}$, $X \in \mathbb{R}^d$, $Z \in \mathbb{R}^k$ and $W \in \mathbb{R}^l$ be random vectors

- $ightharpoonup R_{Y\sim X}^2=1-rac{{
 m var}(Y-Xeta)}{{
 m var}(Y)}$, where eta is the regression coefficient
- $R_{Y \sim X|Z}^2 = \frac{R_{Y \sim X+Z}^2 R_{Y \sim Z}^2}{1 R_{Y \sim Z}^2}$
- $ightharpoonup R_{Y \sim X|Z} = \operatorname{corr}(Y^{\perp Z}, X^{\perp Z})$, for $X \in \mathbb{R}$
- $\qquad \qquad P_{Y \sim X|Z,W} = \frac{R_{Y \sim X|Z} R_{Y \sim W|Z} R_{X \sim W|Z}}{\sqrt{1 R_{Y \sim W|Z}^2} \sqrt{1 R_{X \sim W|Z}^2}}, \text{ for } X, W \in \mathbb{R}.$
- $f_{Y \sim X|Z}^2 = \frac{R_{Y \sim X|Z}^2}{1 R_{Y \sim X|Z}^2}; \quad f_{Y \sim X|Z} = \frac{R_{Y \sim X|Z}}{\sqrt{1 R_{Y \sim X|Z}^2}}, \text{ for } X \in \mathbb{R}$

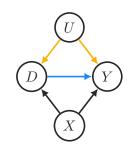
Sensitivity Analysis - Linear Regression

Linear regression model:

$$Y = D\beta + U\gamma + \lambda^T X + \varepsilon$$

Bias in the β -estimate when excluding U:

bias =
$$R_{Y \sim U|D,X} f_{D \sim U|X} \frac{\operatorname{sd}(Y^{\perp D,X})}{\operatorname{sd}(D^{\perp X})}$$



We can find a range for the bias by reasoning about $R_{Y\sim U|D,X}$ and $f_{D\sim U|X}$. For instance, if a researcher believes $R_{D\sim U}^2 \leq 0.5\,R_{D\sim X}^2$, we apply the rules of the R²-calculus and find the bound

$$|f_{D \sim U|X}| \le \sqrt{\frac{0.5 f_{D \sim X}^2}{1 - 0.5 f_{D \sim X}^2}}$$

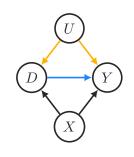
Sensitivity Analysis - Linear Regression

Linear regression model:

$$Y = D\beta + U\gamma + \lambda^T X + \varepsilon$$

Bias in the β -estimate when excluding U:

bias =
$$R_{Y \sim U|D,X} f_{D \sim U|X} \frac{\operatorname{sd}(Y^{\perp D,X})}{\operatorname{sd}(D^{\perp X})}$$



We can find a range for the bias by reasoning about $R_{Y\sim U|D,X}$ and $f_{D\sim U|X}$. For instance, if a researcher believes $R_{D\sim U}^2 \leq 0.5\,R_{D\sim X}^2$, we apply the rules of the R²-calculus and find the bound

$$|f_{D \sim U|X}| \le \sqrt{\frac{0.5 f_{D \sim X}^2}{1 - 0.5 f_{D \sim X}^2}}.$$

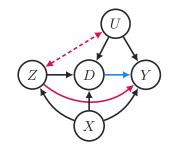
Sensitivity Analysis - Instrumental Variables

Linear Instrumental Variables model:

$$D = Z\theta + U\gamma + \lambda^T X + \varepsilon_D$$
$$Y = D\beta + U\tilde{\gamma} + \tilde{\lambda}^T X + Z\tilde{\theta} + \varepsilon_Y$$

The estimate

$$\beta_{\text{IV}} = \frac{\text{cov}(Z, Y)}{\text{cov}(Z, D)}$$



is unbiased if the instrument $Z \in \mathbb{R}$ influences Y only through D and $Z \perp \!\!\! \perp U$, even in the presence of an unmeasured confounder.

Sensitivity Analysis - Instrumental Variables

Bias under violation of the assumptions (dropping conditioning on X):

bias =
$$\left[\frac{R_{Y \sim U|D,Z} f_{U \sim Z}}{f_{D \sim Z} \sqrt{1 - R_{D \sim U|Z}^2}} + \frac{R_{Y \sim Z|D,U} \sqrt{1 - R_{Y \sim U|D}^2}}{R_{D \sim Z} \sqrt{1 - R_{Z \sim U|D}^2} \sqrt{1 - R_{Y \sim Z|D}^2}} \right] \frac{\operatorname{sd}(Y^{\perp D,Z})}{\operatorname{sd}(D^{\perp Z})}$$

The values $R_{U\sim Z}$ and $R_{Y\sim Z|D,U}$ correspond to the IV assumptions. For sensitivity analysis, we need a bound on one additional parameter, for example $R_{Y\sim U|D,Z}$.

The unknown terms in the bias are implicitely specified by

$$R_{Y \sim U|D,Z} = \frac{R_{Y \sim U|D} - R_{Y \sim Z|D} R_{Z \sim U|D}}{\sqrt{1 - R_{Y \sim Z|D}^2} \sqrt{1 - R_{Z \sim U|D}^2}}$$

$$R_{Y \sim Z|D,U} = \frac{R_{Y \sim Z|D} - R_{Y \sim U|D} R_{Z \sim U|D}}{\sqrt{1 - R_{Y \sim U|D}^2} \sqrt{1 - R_{Z \sim U|D}^2}}$$

$$f_{Z \sim U|D} = f_{Z \sim U} \sqrt{\frac{1 - R_{D \sim Z}^2}{1 - R_{D \sim U|Z}^2}} - R_{Z \sim D} f_{D \sim U|Z}$$

Sensitivity Analysis - Instrumental Variables

Bias under violation of the assumptions (dropping conditioning on X):

bias =
$$\left[\frac{R_{Y \sim U|D,Z} f_{U \sim Z}}{f_{D \sim Z} \sqrt{1 - R_{D \sim U|Z}^2}} + \frac{R_{Y \sim Z|D,U} \sqrt{1 - R_{Y \sim U|D}^2}}{R_{D \sim Z} \sqrt{1 - R_{Z \sim U|D}^2} \sqrt{1 - R_{Y \sim Z|D}^2}} \right] \frac{\operatorname{sd}(Y^{\perp D,Z})}{\operatorname{sd}(D^{\perp Z})}$$

The values $R_{U\sim Z}$ and $R_{Y\sim Z|D,U}$ correspond to the IV assumptions. For sensitivity analysis, we need a bound on one additional parameter, for example $R_{Y\sim U|D,Z}$.

The unknown terms in the bias are implicitely specified by

$$R_{Y \sim U|D,Z} = \frac{R_{Y \sim U|D} - R_{Y \sim Z|D} R_{Z \sim U|D}}{\sqrt{1 - R_{Y \sim Z|D}^2} \sqrt{1 - R_{Z \sim U|D}^2}}$$

$$R_{Y \sim Z|D,U} = \frac{R_{Y \sim Z|D} - R_{Y \sim U|D} R_{Z \sim U|D}}{\sqrt{1 - R_{Y \sim U|D}^2} \sqrt{1 - R_{Z \sim U|D}^2}}$$

$$f_{Z \sim U|D} = f_{Z \sim U} \sqrt{\frac{1 - R_{D \sim Z}^2}{1 - R_{D \sim U|Z}^2}} - R_{Z \sim D} f_{D \sim U|Z}$$

Sensitivity Analysis - K-class estimation

K-class estimate for a linear IV model:

$$\beta_{\kappa} = \frac{\operatorname{cov}(D^{\perp X}, Y^{\perp X}) - \kappa \operatorname{cov}(D^{\perp Z, X}, Y^{\perp Z, X})}{\operatorname{var}(D^{\perp X}) - \kappa \operatorname{var}(D^{\perp Z, X})}$$

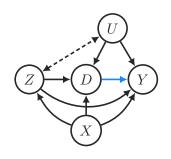
Interpolation:

- $\kappa = 1$: IV estimate
- $\kappa = 0$: regression estimate of $Y \sim D + X$
- $\sim \kappa \to -\infty$: regression estimate of $Y \sim D + X + Z$

Bias under violation of IV and regression assumptions

$$\mathrm{bias} = \left[\frac{f_{Y \sim Z|D,X} \, R_{D \sim Z|X}}{1 - \kappa \left(1 - R_{D \sim Z|X}^2\right)} + R_{Y \sim U|D,Z,X} \, f_{D \sim U|Z,X}\right] \frac{\mathrm{sd}(Y^{\perp D,Z,X})}{\mathrm{sd}(D^{\perp Z,X})}$$

It suffices to specify bounds for two quantities: $R_{Y \sim U|D,Z,X}$ and $f_{D \sim U|Z,X}$. This extends to multiple independent instruments.



Sensitivity Analysis - K-class estimation

K-class estimate for a linear IV model:

$$\beta_{\kappa} = \frac{\operatorname{cov}(D^{\perp X}, Y^{\perp X}) - \kappa \operatorname{cov}(D^{\perp Z, X}, Y^{\perp Z, X})}{\operatorname{var}(D^{\perp X}) - \kappa \operatorname{var}(D^{\perp Z, X})}$$

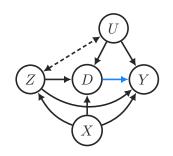
Interpolation:

- $\kappa = 1$: IV estimate
- $\kappa = 0$: regression estimate of $Y \sim D + X$
- $\sim \kappa \rightarrow -\infty$: regression estimate of $Y \sim D + X + Z$

Bias under violation of IV and regression assumptions:

bias =
$$\left[\frac{f_{Y \sim Z|D,X} R_{D \sim Z|X}}{1 - \kappa (1 - R_{D \sim Z|X}^2)} + R_{Y \sim U|D,Z,X} f_{D \sim U|Z,X} \right] \frac{\operatorname{sd}(Y^{\perp D,Z,X})}{\operatorname{sd}(D^{\perp Z,X})}$$

It suffices to specify bounds for two quantities: $R_{Y\sim U|D,Z,X}$ and $f_{D\sim U|Z,X}$. This extends to multiple independent instruments.



Outlook

Short-term:

- ▶ Multiple unmeasured confounders: An upper bound for the bias in linear regression is already known.
- "Combination" of the bounds for different sensitivity parameters: Do we want to allow simultaneous worst-case violations for multiple parameters?
- Application to real-world data, e.g. in econometrics

Long-term:

- Computer algebra system for the R²-calculus
- ▶ Properties of R²-calculus, e.g. what is the minimum number of sensitivity parameters for a given model?
- Generalisation of R²-values

Outlook

Short-term:

- Multiple unmeasured confounders: An upper bound for the bias in linear regression is already known.
- "Combination" of the bounds for different sensitivity parameters: Do we want to allow simultaneous worst-case violations for multiple parameters?
- Application to real-world data, e.g. in econometrics

Long-term:

- ► Computer algebra system for the R²-calculus
- ▶ Properties of R²-calculus, e.g. what is the minimum number of sensitivity parameters for a given model?
- Generalisation of R²-values

References

- Cinelli, Carlos and Chad Hazlett (2020). "Making sense of sensitivity: extending omitted variable bias". In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 82.1, pp. 39–67.
- Hosman, Carrie A., Ben B. Hansen, and Paul W. Holland (2010). "The sensitivity of linear regression coefficients' confidence limits to the omission of a confounder". In: *The Annals of Applied Statistics* 4.2, pp. 849 –870.
- Pearl, Judea (2012). "On a Class of Bias-Amplifying Variables that Endanger Effect Estimates". In: arXiv 1203.3503.
- Small, Dylan S (2007). "Sensitivity Analysis for Instrumental Variables Regression With Overidentifying Restrictions". In: Journal of the American Statistical Association 102.479, pp. 1049–1058.