Sensitivity Analysis with the R^2 -Calculus Tobias Freidling^{1,2}, Qingyuan Zhao^{1,2}

1DPMMS, University of Cambridge ²Cantab Capital Institute for the Mathematics of Information

November 30, 2021 GSK.ai Research Symposium

Untestable Assumptions

There is no unmeasured confounder U , i.e. U cannot effect D and Y (yellow arrows) simultaneously.

The instrument Z influences Y only through D and it is independent of U , that is absence of the red arrows.

Untestable Assumptions

There is no unmeasured confounder U , i.e. U cannot effect D and Y (yellow arrows) simultaneously.

The instrument Z influences Y only through D and it is independent of U , that is absence of the red arrows.

R^2 -Calculus

In a linear regression $Y = X \beta + \varepsilon$, $R_{Y \sim X}^2$ is the proportion of variance in Y that is explained by the model.

Let $Y \in \mathbb{R}, \, X \in \mathbb{R}^d, \, Z \in \mathbb{R}^k$ and $W \in \mathbb{R}^l$ be random vectors

 $R_{Y\sim X}^2=1-\frac{\text{var}(Y-X\beta)}{\text{var}(Y)}$ $\frac{\Gamma(1-\Delta D)}{\text{var}(Y)}$, where β is the regression coefficient $R_{Y \sim X|Z}^2 = \frac{R_{Y \sim X+Z}^2 - R_{Y \sim Z}^2}{1 - R_{Y \sim Z}^2}$ $\frac{\text{var}(Y^{\perp X, Z})}{\cdot}$ $\frac{\mathrm{var}(Y^{\pm X, \omega})}{\mathrm{var}(Y^{\pm Z})} = 1 - R_{Y \sim X|Z}^2$ $\blacktriangleright \; R_{Y \sim X|Z} = \text{corr}(Y^{\perp Z}, X^{\perp Z}), \text{ for } X \in \mathbb{R}$ $R_{Y\sim X|Z,W}=\frac{R_{Y\sim X|Z}-R_{Y\sim W|Z}R_{X\sim W|Z}}{\sqrt{1-R_{Y\sim W|Z}^2}\sqrt{1-R_{X\sim W|Z}^2}}$, for $X, W \in \mathbb{R}$. \blacktriangleright $f_{Y\sim X|Z}^2 = \frac{R_{Y\sim X|Z}^2}{1-R_{Y\sim X|Z}^2};$ $f_{Y\sim X|Z} = \frac{R_{Y\sim X|Z}}{\sqrt{1-R_{Y\sim X}^2}}$, for $X \in \mathbb{R}$

R^2 -Calculus

In a linear regression $Y = X \beta + \varepsilon$, $R_{Y \sim X}^2$ is the proportion of variance in Y that is explained by the model.

R²-Calculus

Let $Y \in \mathbb{R}$, $X \in \mathbb{R}^d$, $Z \in \mathbb{R}^k$ and $W \in \mathbb{R}^l$ be random vectors

\n- $$
R_{Y \sim X}^2 = 1 - \frac{\text{var}(Y - X\beta)}{\text{var}(Y)}
$$
, where β is the regression coefficient
\n- $R_{Y \sim X|Z}^2 = \frac{R_{Y \sim X+Z}^2 - R_{Y \sim Z}^2}{1 - R_{Y \sim Z}^2}$
\n- $\frac{\text{var}(Y^{\perp X, Z})}{\text{var}(Y^{\perp Z})} = 1 - R_{Y \sim X|Z}^2$
\n- $R_{Y \sim X|Z} = \text{corr}(Y^{\perp Z}, X^{\perp Z})$, for $X \in \mathbb{R}$
\n- $R_{Y \sim X|Z,W} = \frac{R_{Y \sim X|Z} - R_{Y \sim W|Z}R_{X \sim W|Z}}{\sqrt{1 - R_{Y \sim W|Z}^2}\sqrt{1 - R_{X \sim W|Z}^2}}$, for $X, W \in \mathbb{R}$.
\n- $f_{Y \sim X|Z}^2 = \frac{R_{Y \sim X|Z}^2}{1 - R_{Y \sim X|Z}^2}$; $f_{Y \sim X|Z} = \frac{R_{Y \sim X|Z}^2}{\sqrt{1 - R_{Y \sim X|Z}^2}}$, for $X \in \mathbb{R}$
\n

Sensitivity Analysis - Linear Regression

Linear regression model:

$$
Y = D\beta + U\gamma + \lambda^T X + \varepsilon
$$

Bias in the β -estimate when excluding U:

bias =
$$
R_{Y \sim U|D,X} f_{D \sim U|X} \frac{\text{sd}(Y^{\perp D,X})}{\text{sd}(D^{\perp X})}
$$

We can find a range for the bias by reasoning about $R_{Y \sim U(D,X)}$ and $f_{D\sim U|X^+}$ For instance, if a researcher believes $R^2_{D\sim U} \leq 0.5\,R^2_{D\sim X^+}$ we apply the rules of the R^2 -calculus and find the bound

$$
|f_{D\sim U|X}| \le \sqrt{\frac{0.5f_{D\sim X}^2}{1 - 0.5f_{D\sim X}^2}}.
$$

Linear regression model:

$$
Y = D\beta + U\gamma + \lambda^T X + \varepsilon
$$

Bias in the β -estimate when excluding U:

bias =
$$
R_{Y \sim U|D,X} f_{D \sim U|X} \frac{\text{sd}(Y^{\perp D,X})}{\text{sd}(D^{\perp X})}
$$

We can find a range for the bias by reasoning about $R_{Y \sim U|D,X}$ and $f_{D\sim U|X}$. For instance, if a researcher believes $R^2_{D\sim U} \leq 0.5\,R^2_{D\sim X}$, we apply the rules of the R^2 -calculus and find the bound

$$
|f_{D\sim U|X}| \le \sqrt{\frac{0.5f_{D\sim X}^2}{1 - 0.5f_{D\sim X}^2}}.
$$

Linear Instrumental Variables model:

$$
D = Z\theta + U\gamma + \lambda^T X + \varepsilon_D
$$

$$
Y = D\beta + U\tilde{\gamma} + \tilde{\lambda}^T X + Z\tilde{\theta} + \varepsilon_Y
$$

The estimate

$$
\beta_{\rm IV} = \frac{\text{cov}(Z, Y)}{\text{cov}(Z, D)}
$$

is unbiased if the instrument $Z \in \mathbb{R}$ influences Y only through D and $Z \perp\!\!\!\perp U$, even in the presence of an unmeasured confounder.

Sensitivity Analysis - Instrumental Variables

Bias under violation of the assumptions (dropping conditioning on X):

bias =
$$
\left[\frac{R_{Y \sim U|D,Z} f_{U \sim Z}}{f_{D \sim Z} \sqrt{1 - R_{D \sim U|Z}^2}} + \frac{R_{Y \sim Z|D,U} \sqrt{1 - R_{Y \sim U|D}^2}}{R_{D \sim Z} \sqrt{1 - R_{Z \sim U|D}^2} \sqrt{1 - R_{Y \sim Z|D}^2}} \right] \frac{\text{sd}(Y^{\perp D,Z})}{\text{sd}(D^{\perp Z})}
$$

The values $R_{U\sim Z}$ and $R_{Y\sim Z|D,U}$ correspond to the IV assumptions. For sensitivity analysis, we need a bound on one additional parameter, for example $R_{Y \sim U|D,Z}$.

The unknown terms in the bias are implicitely specified by

$$
R_{Y \sim U|D,Z} = \frac{R_{Y \sim U|D} - R_{Y \sim Z|D} R_{Z \sim U|D}}{\sqrt{1 - R_{Y \sim Z|D}^2} \sqrt{1 - R_{Z \sim U|D}^2}}
$$

$$
R_{Y \sim Z|D,U} = \frac{R_{Y \sim Z|D} - R_{Y \sim U|D} R_{Z \sim U|D}}{\sqrt{1 - R_{Y \sim U|D}^2} \sqrt{1 - R_{Z \sim U|D}^2}}
$$

$$
f_{Z \sim U|D} = f_{Z \sim U} \sqrt{\frac{1 - R_{D \sim Z}^2}{1 - R_{D \sim U|Z}^2}} - R_{Z \sim D} f_{D \sim U|Z}
$$

Sensitivity Analysis - Instrumental Variables

Bias under violation of the assumptions (dropping conditioning on X):

bias =
$$
\left[\frac{R_{Y \sim U|D,Z} f_{U \sim Z}}{f_{D \sim Z} \sqrt{1 - R_{D \sim U|Z}^2}} + \frac{R_{Y \sim Z|D,U} \sqrt{1 - R_{Y \sim U|D}^2}}{R_{D \sim Z} \sqrt{1 - R_{Z \sim U|D}^2} \sqrt{1 - R_{Y \sim Z|D}^2}} \right] \frac{\text{sd}(Y^{\perp D,Z})}{\text{sd}(D^{\perp Z})}
$$

The values $R_{U\sim Z}$ and $R_{Y\sim Z|D,U}$ correspond to the IV assumptions. For sensitivity analysis, we need a bound on one additional parameter, for example $R_{Y \sim U|D,Z}$.

The unknown terms in the bias are implicitely specified by

$$
R_{Y \sim U|D,Z} = \frac{R_{Y \sim U|D} - R_{Y \sim Z|D} R_{Z \sim U|D}}{\sqrt{1 - R_{Y \sim Z|D}^2} \sqrt{1 - R_{Z \sim U|D}^2}}
$$

$$
R_{Y \sim Z|D,U} = \frac{R_{Y \sim Z|D} - R_{Y \sim U|D} R_{Z \sim U|D}}{\sqrt{1 - R_{Y \sim U|D}^2} \sqrt{1 - R_{Z \sim U|D}^2}}
$$

$$
f_{Z \sim U|D} = f_{Z \sim U} \sqrt{\frac{1 - R_{D \sim Z}^2}{1 - R_{D \sim U|Z}^2}} - R_{Z \sim D} f_{D \sim U|Z}
$$

K-class estimate for a linear IV model:

$$
\beta_{\kappa} = \frac{\text{cov}(D^{\perp X}, Y^{\perp X}) - \kappa \text{cov}(D^{\perp Z, X}, Y^{\perp Z, X})}{\text{var}(D^{\perp X}) - \kappa \text{var}(D^{\perp Z, X})}
$$

Interpolation:

- \triangleright $\kappa = 1$: IV estimate
- \triangleright $\kappa = 0$: regression estimate of $Y \sim D+X$

 \triangleright $\kappa \rightarrow -\infty$: regression estimate of $Y \sim D+X+Z$

Bias under violation of IV and regression assumptions:

bias =
$$
\left[\frac{f_{Y\sim Z|D,X} R_{D\sim Z|X}}{1 - \kappa (1 - R_{D\sim Z|X}^2)} + R_{Y\sim U|D,Z,X} f_{D\sim U|Z,X}\right] \frac{\text{sd}(Y^\perp)}{\text{sd}(D)}
$$

It suffices to specify bounds for two quantities: $R_{Y \sim U(D,Z,X)}$ and $f_{D\sim U|Z,X}$. This extends to multiple independent instruments.

K-class estimate for a linear IV model:

$$
\beta_{\kappa} = \frac{\text{cov}(D^{\perp X}, Y^{\perp X}) - \kappa \text{cov}(D^{\perp Z, X}, Y^{\perp Z, X})}{\text{var}(D^{\perp X}) - \kappa \text{var}(D^{\perp Z, X})}
$$

Interpolation:

- \triangleright $\kappa = 1$: IV estimate
- \triangleright $\kappa = 0$: regression estimate of $Y \sim D+X$
- \triangleright $\kappa \rightarrow -\infty$: regression estimate of $Y \sim D+X+Z$

Bias under violation of IV and regression assumptions:

bias =
$$
\left[\frac{f_{Y\sim Z|D,X} R_{D\sim Z|X}}{1-\kappa(1-R_{D\sim Z|X}^2)} + R_{Y\sim U|D,Z,X} f_{D\sim U|Z,X}\right] \frac{\text{sd}(Y^{\perp D,Z,X})}{\text{sd}(D^{\perp Z,X})}
$$

It suffices to specify bounds for two quantities: $R_{Y \sim U|D,Z,X}$ and $f_{D\sim U|Z,X}$. This extends to multiple independent instruments.

Outlook

Short-term:

- \triangleright Multiple unmeasured confounders: An upper bound for the bias in linear regression is already known.
- \triangleright "Combination" of the bounds for different sensitivity parameters: Do we want to allow simultaneous worst-case violations for multiple parameters?
- \triangleright Application to real-world data, e.g. in econometrics

- Computer algebra system for the R^2 -calculus
- Properties of R^2 -calculus, e.g. what is the minimum number of sensitivity parameters for a given model?
- Generalisation of R^2 -values

Outlook

Short-term:

- \triangleright Multiple unmeasured confounders: An upper bound for the bias in linear regression is already known.
- \triangleright "Combination" of the bounds for different sensitivity parameters: Do we want to allow simultaneous worst-case violations for multiple parameters?
- \triangleright Application to real-world data, e.g. in econometrics

Long-term:

- Computer algebra system for the R^2 -calculus
- Properties of R^2 -calculus, e.g. what is the minimum number of sensitivity parameters for a given model?
- Generalisation of R^2 -values

Cinelli, Carlos and Chad Hazlett (2020). "Making sense of sensitivity: extending omitted variable bias". In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 82.1, pp. 39–67. Hosman, Carrie A., Ben B. Hansen, and Paul W. Holland (2010). "The sensitivity of linear regression coefficients' confidence limits to the omission of a confounder". In: The Annals of Applied Statistics 4.2, pp. 849 –870. Pearl, Judea (2012). "On a Class of Bias-Amplifying Variables that Endanger Effect Estimates". In: arXiv 1203.3503. Small, Dylan S (2007). "Sensitivity Analysis for Instrumental Variables Regression With Overidentifying Restrictions". In: Journal of the American

Statistical Association 102.479, pp. 1049–1058.