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Untestable Assumptions

Regression

There is no unmeasured con-
founder U, i.e. U cannot effect
D and Y ( ) simul-
taneously.



Untestable Assumptions

Regression Instrumental Variables

There is no unmeasured con-  The instrument Z influences Y
founder U, i.e. U cannot effect  only through D and it is inde-
D and Y ( ) simul-  pendent of U, that is absence of

taneously. the red arrows.



R2-Calculus

In a linear regression Y = X[ + ¢, R%NX is the proportion of variance
in Y that is explained by the model.
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R2-Calculus
Let Y e R, X € R%, Z € R¥ and W € R! be random vectors
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Sensitivity Analysis - Linear Regression
Linear regression model: @

Y =DB+Uy+ X +¢
Bias in the (-estimate when excluding U: @

' sd(y DX
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Linear regression model: @
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We can find a range for the bias by reasoning about Ry .y p x and
Jp~v|x- For instance, if a researcher believes R%NU <0.5 R%NX, we
apply the rules of the R?-calculus and find the bound

/ 0'5-}% X
< 7’\‘.
‘fDNU\X‘ = 1 0-5f2~



Sensitivity Analysis - Instrumental Variables

Linear Instrumental Variables model:

D=20+Uv+X'X+¢ep
Y =D+ Uy + X + 70 + ey

The estimate

cov(Z,Y)

brv = cov(Z,D)

is unbiased if the instrument Z € R influences Y only through D and
Z 1L U, even in the presence of an unmeasured confounder.



Sensitivity Analysis - Instrumental Variables

Bias under violation of the assumptions (dropping conditioning on X):

2
bias = By~vipz fu~z + Ry~zipu\/1— By yp sd(Y+P7)
- 2 1z
o~z Ronz 1= B oy /1= Ry ] 24P
The values Ry~z and Ry .z p u correspond to the IV assumptions.

For sensitivity analysis, we need a bound on one additional parameter,
fOF example RY~U|D,Z'



Sensitivity Analysis - Instrumental Variables

Bias under violation of the assumptions (dropping conditioning on X):

Ry~zipuy/1— RS _up ] sd(Y D7)

bias — Ry v\p,z fu~z
e sd(D17)

+ 5
fp~z Rp~z \/l - R’éwr'\p \/1 - R‘2y~Z|D

The values Ry~z and Ry .z p u correspond to the IV assumptions.
For sensitivity analysis, we need a bound on one additional parameter,

fOF example RY~U|D,Z'
The unknown terms in the bias are implicitely specified by

Ry vuip — Ry~z|p Rz~u|D
\/1 - R%mzu:)\/l —RZ uip

Ry.zp — Ry~up Rz~u|D
Ry .zipu = 5 5
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Sensitivity Analysis - K-class estimation

K-class estimate for a linear IV model:

cov(D+X, YJ-X) — keov(D1H2X Yy L2.X)
var(DLX) — g var(DL4X)

ﬂ/{:

Interpolation:
> = 1: IV estimate
> 1 = (: regression estimate of Y ~ D+ X
> K ——00: regression estimate of Y ~ D+ X427



Sensitivity Analysis - K-class estimation

K-class estimate for a linear IV model:

cov(D+X YY) — g cov(DL4X Y LZX)

var(DLX) — g var(DL4X)

ﬂ/{:

Interpolation:

> = 1: IV estimate

> 1 = (: regression estimate of Y ~ D+ X

> K ——00: regression estimate of Y ~ D+ X427
Bias under violation of IV and regression assumptions:

fy~z\p,x Rp~z|x sd(YLDZ.X)
bias = 7 + Ry vuip,z.x Ip~U1Z2X | —miz0
1-s(l- RQD~2|x) | | sd(DL+%X)

It suffices to specify bounds for two quantities: Ry .y p,z x and
Ip~v|z,x- This extends to multiple independent instruments.



Short-term:

» Multiple unmeasured confounders: An upper bound for the bias in
linear regression is already known.

» “Combination” of the bounds for different sensitivity parameters:
Do we want to allow simultaneous worst-case violations for
multiple parameters?

» Application to real-world data, e.g. in econometrics
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Long-term:
» Computer algebra system for the R?-calculus

» Properties of R?-calculus, e.g. what is the minimum number of
sensitivity parameters for a given model?

» Generalisation of R%-values
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