Sensitivity Analysis with the R²-Calculus

Tobias Freidling^{1,2}, Qingyuan Zhao^{1,2}

Untestable Assumptions

To estimate the true effect (blue arrow) of a variable D on an outcome Y, additional, unverifiable assumptions are needed.

For instance, linear regression requires that an unmeasured confounder U does not effect D and Y (yellow arrows) simultaneously. In an instrumental variable setting, it is required that the instrument Z influences Y only through D and that it is independent of U, i.e. absence of the red arrows.

Sensitivity analysis allows practitioners to explore unmeasured confounding and its effect on the estimate and confidence interval.

R²-Calculus

In a linear regression $Y = X\beta + \varepsilon$, the coefficient of determination, i.e. $R_{Y \sim X}^2$, is the proportion of variance in Y that is explained by the model.

Definitions

Let $Y \in \mathbb{R}$, $X \in \mathbb{R}^d$, $Z \in \mathbb{R}^k$ and $W \in \mathbb{R}^l$ be random vectors

- R²-value: $R_{Y \sim X}^2 = 1 \frac{\operatorname{var}(Y X\beta)}{\operatorname{var}(Y)}$, where β is the regression coefficient.
- Partial R²-value: $R_{Y \sim X|Z}^2 = \frac{R_{Y \sim X+Z}^2 R_{Y \sim Z}^2}{1 R_{Y \sim Z}^2}$.
- **R-value:** $R_{Y \sim X|Z} = \operatorname{corr}(Y^{\perp Z}, X^{\perp Z})$, for $X \in \mathbb{R}$.
- (Partial) f-value: $f_{Y \sim X|Z}^2 = \frac{R_{Y \sim X|Z}^2}{1 R_{Y \sim X|Z}^2}$; $f_{Y \sim X|Z} = \frac{R_{Y \sim X|Z}}{\sqrt{1 R_{Y \sim X|Z}^2}}$, for X

Calculation Rules

- If $X \perp\!\!\!\perp Z$, then $R^2_{Y \sim X+Z} = R^2_{Y \sim X} + R^2_{Y \sim Z}$.
- $\frac{\operatorname{var}(Y^{\perp X,Z})}{\operatorname{var}(Y^{\perp Z})} = 1 R_{Y \sim X|Z}^2$ and thus $1 R_{Y \sim X+Z|W}^2 = (1 R_{Y \sim X|W}^2)($
- $R_{Y \sim X|Z,W} = \frac{R_{Y \sim X|Z} R_{Y \sim W|Z} R_{X \sim W|Z}}{\sqrt{1 R_{Y \sim W|Z}^2} \sqrt{1 R_{X \sim W|Z}^2}}$, for $X, W \in \mathbb{R}$.
- If $X \in \mathbb{R}$ and $Y \perp (Z, W)$, then $R_{Y \sim X|Z,W} = \frac{R_{Y \sim X|Z}}{\sqrt{1-2}}$.

$$\sqrt{1-R_{X\sim W|Z}^2}$$

E-mail: taf40@cam.ac.uk

$$X \in \mathbb{R}$$
.

$$(1 - R_{Y \sim Z|X.W}^2)$$

Linear Regression

A linear regression model^[1] with one-dimensional outcome Y, variable of interest D and unmeasured confounder U and multi-dimensional covariates X is given by

$$Y = D\beta + U\gamma + \lambda^T X + \varepsilon.$$

The bias in the β -estimate when excluding U can be expressed with the R²-calculus as

bias =
$$R_{Y \sim U|D, X} f_{D \sim U|X} \frac{\operatorname{sd}(Y^{\perp D, X})}{\operatorname{sd}(D^{\perp X})}$$

This allows a practitioner to find a range for the bias by reasoning about the two unobservable quantities $R_{Y \sim U|D,X}$ and $f_{D \sim U|X}$. For instance, one can specify the inequality $R_{D\sim U}^2 \leq 0.5 R_{D\sim X_i}^2$ which yields a bound on $f_{D\sim U|X}$ using the R²calculus.

If the ranges $R_{Y \sim U|D,X} =: R \in [b_R^-, b_R^+]$ and $f_{D \sim U|}$ the maximum/minimum bias is

 $\max_{R \in [b_R^-, b_R^+], f \in [b_f^-, b_f^+]} / \min_{R \in [b_R^-, b_R^+], f \in [b_f^-, b_f^+]} R_{Y \sim U|D}$

K-class Estimator The κ -class estimate for a linear system depicted in the graph on the right is given by and interpolates between the IV estimate, that is $\kappa = 1$, and the estimates from the linear regressions $Y \sim D + X$, i.e. $\kappa = 0$, and $Y \sim D + X + Z$, i.e. $\kappa \to -\infty$, respectively. Omitting $U^{[2]}$ in the estimation leads to the bias $_{Z,X} f_{D \sim U|Z,X} \left| \frac{\operatorname{sd}(Y^{\perp D,Z,X})}{\operatorname{sd}(D^{\perp Z,X})} \right|$ Remarkably, in order to bound the bias it suffices to specify bounds for just two quantities: $R_{Y \sim U|D,Z,X}$ and $f_{D \sim U|Z,X}$, which parametrise the linear regression assumptions. This result can be extended to a multi-dimensional Z with independent com-

$$\beta_{\kappa} = \frac{\operatorname{cov}(D^{\perp X}, Y^{\perp X}) - \kappa \operatorname{cov}(D^{\perp Z, X}, Y^{\perp Z, X})}{\operatorname{var}(D^{\perp X}) - \kappa \operatorname{var}(D^{\perp Z, X})}$$

bias =
$$\left| \frac{f_{Y \sim Z|D,X} R_{D \sim Z|X}}{1 - \kappa \left(1 - R_{D \sim Z|X}^2\right)} + R_{Y \sim U|D,Z,X} \right|$$

ponents, see also [3].

¹DPMMS, University of Cambridge ²Cantab Capital Institute for the Mathematics of Information

$$y_{|X} =: f \in [b_f^-, b_f^+]$$
 are specified,

$$f_{D,X} f_{D\sim U|X} \frac{\operatorname{sd}(Y^{\perp D,X})}{\operatorname{sd}(D^{\perp X})}.$$

In a linear Instrumental Variable (IV) model, the estimate

$$\beta_{\rm IV} = \frac{{\rm cov}(Z, Z)}{{\rm cov}(Z, Z)}$$

is unbiased if the instrument $Z \in \mathbb{R}$ influences Y only through D and $Z \perp U$, even in the presence of an unmeasured confounder. When these assumptions are violated, the bias is

bias =
$$\left| \frac{R_{Y \sim U|D,Z,X} f_{U \sim Z|X}}{f_{D \sim Z|X} \sqrt{1 - R_{D \sim U|Z,X}^2}} + \right|$$

itly constrain the bias

$$R_{Y \sim U|D,Z,X} = \frac{R_{Y \sim U|D,X} - R_{Y \sim Z|D,X}}{\sqrt{1 - R_{Y \sim Z|D,X}^2}} \sqrt{1 - R_{Y \sim Z|D,X}^2} \sqrt{1 - R_{Y \sim Z$$

parameters in an intuitive fashion. necessary.

- Carlos Cinelli and Chad Hazlett. Making sense of sensitivity: extending omitted variable bias. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 82(1):39–67, 2020.
- [2] Judea Pearl. On a class of bias-amplifying variables that endanger effect estimates. *arXiv*, (1203.3503), 2012.
- [3] Dylan S Small. Sensitivity analysis for instrumental variables regression with overidentifying restrictions. Journal of the American Statistical Association, 102(479):1049–1058, 2007.
- Carrie A. Hosman, Ben B. Hansen, and Paul W. Holland. The sensitivity of linear regression coefficients' confidence limits to the omission of a confounder. The Annals of Applied Statistics, 4(2):849 - 870, 2010.

Discussion and Outlook

- The R²-calculus is a comprehensive framework to analyse confounding in linear models. Importantly, it allows practitioners to think about the sensitivity
- Future work includes sensitivity analysis for confidence intervals as well as generalising the setting to multiple confounders^[4]. To analyse more involved systems, implementing the R^2 -calculus in a computer algebra system seems to be

References

Website: tobias-freidling.onrender.com