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Untestable Assumptions

To estimate the true effect (blue arrow) of a variable D on an outcome Y , ad-
ditional, unverifiable assumptions are needed.

For instance, linear regression requires that an unmeasured confounderU does
not effectD and Y (yellow arrows) simultaneously. In an instrumental variable
setting, it is required that the instrument Z influences Y only through D and

that it is independent of U , i.e. absence of the red arrows.
Sensitivity analysis allows practitioners to explore unmeasured confounding

and its effect on the estimate and confidence interval.
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R2-Calculus

In a linear regression Y = Xβ + ε, the coefficient of determination, i.e. R2
Y ∼X ,

is the proportion of variance in Y that is explained by the model.

Definitions

Let Y ∈ R, X ∈ Rd, Z ∈ Rk andW ∈ Rl be random vectors

R2-value: R2
Y ∼X = 1 − var(Y −Xβ)

var(Y ) , where β is the regression coefficient.

Partial R2-value: R2
Y ∼X|Z = R2

Y ∼X+Z−R2
Y ∼Z

1−R2
Y ∼Z

.

R-value: RY ∼X|Z = corr(Y ⊥Z, X⊥Z), forX ∈ R.

(Partial) f-value: f 2
Y ∼X|Z = R2

Y ∼X|Z
1−R2

Y ∼X|Z
; fY ∼X|Z = RY ∼X|Z√

1−R2
Y ∼X|Z

, forX ∈ R.

Calculation Rules

IfX ⊥⊥ Z , then R2
Y ∼X+Z = R2

Y ∼X + R2
Y ∼Z.

var(Y ⊥X,Z)
var(Y ⊥Z) = 1 − R2

Y ∼X|Z and thus 1 − R2
Y ∼X+Z|W = (1 − R2

Y ∼X|W )(1 − R2
Y ∼Z|X.W )

RY ∼X|Z,W = RY ∼X|Z−RY ∼W |ZRX∼W |Z√
1−R2

Y ∼W |Z

√
1−R2

X∼W |Z
, forX, W ∈ R.

IfX ∈ R and Y ⊥⊥ (Z, W ), then RY ∼X|Z,W = RY ∼X|Z√
1−R2

X∼W |Z
.

Linear Regression
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A linear regression model[1] with one-dimensional out-

come Y , variable of interest D and unmeasured con-

founder U and multi-dimensional covariates X is given by

Y = Dβ + Uγ + λTX + ε.

The bias in the β-estimate when excluding U can be ex-

pressed with the R2-calculus as

bias = RY ∼U |D,X fD∼U |X
sd(Y ⊥D,X)
sd(D⊥X)

.

This allows a practitioner to find a range for the bias by reasoning about the two

unobservable quantities RY ∼U |D,X and fD∼U |X . For instance, one can specify

the inequality R2
D∼U ≤ 0.5R2

D∼Xj
which yields a bound on fD∼U |X using the R

2-

calculus.

If the ranges RY ∼U |D,X =: R ∈ [b−
R, b+

R] and fD∼U |X =: f ∈ [b−
f , b+

f ] are specified,
the maximum/minimum bias is

max
R∈[b−

R,b+
R], f∈[b−

f ,b+
f ]

/ min
R∈[b−

R,b+
R], f∈[b−

f ,b+
f ]

RY ∼U |D,X fD∼U |X
sd(Y ⊥D,X)
sd(D⊥X)

.

K-class Estimator
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The κ-class estimate for a linear system depicted
in the graph on the right is given by

βκ = cov(D⊥X, Y ⊥X) − κ cov(D⊥Z,X, Y ⊥Z,X)
var(D⊥X) − κ var(D⊥Z,X)

and interpolates between the IV estimate, that is

κ = 1, and the estimates from the linear regres-
sions Y ∼ D + X , i.e. κ = 0, and Y ∼ D + X + Z ,
i.e. κ → −∞, respectively.
Omitting U [2] in the estimation leads to the bias

bias =

 fY ∼Z|D,X RD∼Z|X

1 − κ (1 − R2
D∼Z|X)

+ RY ∼U |D,Z,X fD∼U |Z,X

 sd(Y ⊥D,Z,X)
sd(D⊥Z,X)

.

Remarkably, in order to bound the bias it suffices to specify bounds for just two

quantities: RY ∼U |D,Z,X and fD∼U |Z,X , which parametrise the linear regression

assumptions.

This result can be extended to a multi-dimensional Z with independent com-
ponents, see also [3].

Instrumental Variables
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In a linear Instrumental Variable (IV) model, the es-

timate

βIV = cov(Z, Y )
cov(Z, D)

is unbiased if the instrument Z ∈ R influences Y
only through D and Z ⊥⊥ U , even in the presence
of an unmeasured confounder.
When these assumptions are violated, the bias is

bias =

 RY ∼U |D,Z,X fU∼Z|X

fD∼Z|X

√
1 − R2

D∼U |Z,X

+
RY ∼Z|D,U,X

√
1 − R2

Y ∼U |D,X

RD∼Z|X

√
1 − R2

Z∼U |D,X

√
1 − R2

Y ∼Z|D,X

 sd(Y ⊥D,Z,X)
sd(D⊥Z,X)

.

To perform sensitivity analysis, we require a practitioner to specify bounds for
RU∼Z|X and RY ∼Z|D,U,X which parametrise the IV assumptions and one addi-
tional parameter, e.g. RY ∼U |D,Z,X . Hence, the following three equations implic-
itly constrain the bias

RY ∼U |D,Z,X =
RY ∼U |D,X − RY ∼Z|D,XRZ∼U |D,X√

1 − R2
Y ∼Z|D,X

√
1 − R2

Z∼U |D,X

, RY ∼Z|D,U,X =
RY ∼Z|D,X − RY ∼U |D,XRZ∼U |D,X√

1 − R2
Y ∼U |D,X

√
1 − R2

Z∼U |D,X

,

fZ∼U |D,X = fZ∼U |X

√√√√ 1 − R2
D∼Z|X

1 − R2
D∼U |Z,X

− RZ∼D|XfD∼U |Z,X.

Discussion and Outlook

The R2-calculus is a comprehensive framework to analyse confounding in lin-

ear models. Importantly, it allows practitioners to think about the sensitivity

parameters in an intuitive fashion.

Futurework includes sensitivity analysis for confidence intervals aswell as gen-

eralising the setting to multiple confounders[4]. To analyse more involved sys-

tems, implementing the R2-calculus in a computer algebra system seems to be

necessary.
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