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Introduction

Response variable is an unknown function of different features.

Feature-selection is important to understand the data-generating process

and build parsimonious models, esp. for ’small n large p’ data.

Few assumptions are desirable. → model-free selection methods

Inference on the selected features is only correct when the selection is

accounted for.

HSIC-Lasso

Hilbert-Schmidt Independence Criterion (HSIC)

HSIC[1] measures the dependence between two random variables X and Y :

HSIC(X, Y ) = EX,X ′,Y,Y ′[k(X, X ′) l(Y, Y ′)] + EX,X ′[k(X, X ′)] EY,Y ′[l(Y, Y ′)]
− 2 EX,Y [EX ′[k(X, X ′)] EY ′[l(Y, Y ′)]] ,

where k and l are kernel functions and X ′ and Y ′ are i.i.d. copies.

HSIC(X, Y ) ≥ 0, HSIC(X, Y ) = 0 ⇔ X ⊥⊥ Y

Modelfree, i.e. no assumptions on distribution of X and Y required

Feature Selection

Goal: Selection of (non-redundant) subset of features X1, . . . , Xp that are

strongly associated with response Y .

HSIC-ordering[2]: Select k features for which ĤSIC(Y, Xj) is largest
HSIC-Lasso[3]: Select j-th feature if β̂j is positive, where

β̂ = argmin
β∈Rp

+

−
p∑

j=1
βj ĤSIC(Xj, Y ) + 1

2

p∑
i,j=1

βiβj ĤSIC(Xi, Xj) + λ‖β‖1.

Post-selection Inference (PSI)

To guarantee correct inference on the selected features, account for/condi-

tion on the information encapsulated in the selection.

For (affine) linear inference target ηTµ and selection procedure {AY ≤ b}:
Polyhedral Lemma[4]

Let Y ∼ N (µ, Σ) with µ ∈ Rq and Σ ∈ Rq×q, η ∈ Rq, A ∈ Rm×q and b ∈ Rm.

Then, ηTY |{AY ≤ b} ∼ TruncatedNormal(ηTµ, ηTΣη, V−, V+).

Type-I Error and Power

Figure 1. Empirical type-I error for HSIC-target and envisaged level

0.05. Asymptotically normal block and incomplete U-statistics es-

timator with varying sizes. Toy models with continuous (1st & 2nd

panel) and categorical (3rd & 4th panel) response; with and without

correlation in features.
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Figure 2. Empirical power for detecting the feature θX1. Proposed
method, multiscale bootstrapping[5] and linear PSI-model. Toy mod-

els with discrete (1st panel), linear (2nd panel) and non-linear (3rd

panel) data-generating process.
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PSI with HSIC-Lasso

Normal HSIC-Lasso: β̂ = argminβ∈Rp
+

−βTH + 1
2 βTMβ + λ βTw,

where Mij = ĤSIC(Xi, Xj), asymptotically normal Hj = ĤSICN(Xj, Y ) and
weight vector w.

Affine linear selection: Selection procedure Ŝ = {j : β̂j > 0}
For positive definite M , {Ŝ = S} = {A (HS, HSc)T ≤ b} with

A = −1
λ

(
M−1

SS | 0
MScSM−1

SS | Id

)
, b =

(
−M−1

SS wS

wSc−MScSM−1
SS wS

)
.

Inference targets: HSIC-target Hj = eT
j H ⇒ η = ej; partial target (similar

to regression coefficient) β̂par
j,S = M−1

SSHS ⇒ η = (M−1
SSH | 0)Tej.

Polyhedral Lemma for asymptotically normal random variables

Application in Practice

Challenges: (1) Positive definiteness of M , (2) Computational costs of

HSIC-estimation, (3) choice of λ

Solution: (1) Positive definite approximation, (2) & (3) Set data aside to

screen for relevant features and estimate λ

Flexibility: 2 asymptotically normal HSIC-estimators[5] with adjustable

size; Adaptive- and non-adaptive Lasso penalty; Hyper-parameter choice

via cross-validation or AIC

Real-world Data

RNAseq data from the Broad Institute’s Single Cell

Portal

Response: type of blood cell (10-level categorical),

Features: 26 593 genes, Sample size: 1 078

Half of the data used for screening 1000 features

and choice of λ with cross-validation; Incomplete

U-statistics estimator of size 20 and partial target

HSIC-Lasso selects 13 features; 9 of them are

significant

Found potentially new molecular signatures;

Confidence statement on selected features

Gene p-value

ACTB 0.961

IGJ 0.001

CD14 0.026

LYZ 0.001

FCER1A 0.001

MTRNR2L2 0.420

FCGR3A 0.001

RPS3A 0.001

FTL 0.968

TMSB4X 0.012

HLA-DPA1 0.001

TVAS5 0.553

IFI30 0.002
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