Post-selection Inference with HSIC-Lasso

Tobias Freidling¹, Benjamin Poignard^{2,3}, Héctor Climente-González³, Makoto Yamada^{3,4}

Introduction

- Response variable is an unknown function of different features.
- Feature-selection is important to understand the data-generating process and build parsimonious models, esp. for 'small *n* large *p*' data.
- Few assumptions are desirable. \rightarrow model-free selection methods
- Inference on the selected features is only correct when the selection is accounted for.

- $\text{HSIC}(X, Y) \geq 0$, $\text{HSIC}(X, Y) = 0 \Leftrightarrow X \perp Y$
- **Modelfree**, i.e. no assumptions on distribution of *X* and *Y* required

Goal: Selection of (non-redundant) subset of features X_1, \ldots, X_p that are strongly associated with response *Y* .

- HSIC-ordering^{[\[2\]](#page-0-1)}: Select *k* features for which $\widehat{\mathrm{HSIC}}($ \widehat{HSTC} *Y, Xj*) is largest
- **HSIC-Lasso**[\[3\]](#page-0-2): Select *j*-th feature if *β* ˆ j_j is positive, where

HSIC-Lasso

Hilbert-Schmidt Independence Criterion (HSIC)

 \mid HSIC^{[\[1\]](#page-0-0)} measures the dependence between two random variables X and Y :

 $\text{HSIC}(X, Y) = \text{E}_{X, X', Y, Y'}[k(X, X') | l(Y, Y')] + \text{E}_{X, X'}[k(X, X')] \text{E}_{Y, Y'}[l(Y, Y')]$ $- 2 E_{X,Y}[E_{X'}[k(X, X')] E_{Y'}[l(Y, Y')]$

where k and l are kernel functions and X' and Y' are i.i.d. copies.

To guarantee correct inference on the selected features, account for/condition on the information encapsulated in the selection. For (affine) linear inference target $\eta^T\mu$ and selection procedure $\{AY \leq b\}$:

Figure 1. Empirical type-I error for HSIC-target and envisaged level 0.05. Asymptotically normal block and incomplete U-statistics estimator with varying sizes. Toy models with continuous (1st & 2nd panel) and categorical (3rd & 4th panel) response; with and without correlation in features.

Feature Selection

Figure 2. Empirical power for detecting the feature θX_1 . Proposed method, multiscale bootstrapping^{[\[5\]](#page-0-4)} and linear PSI-model. Toy models with discrete (1st panel), linear (2nd panel) and non-linear (3rd panel) data-generating process.

$$
\hat{\beta} = \underset{\beta \in \mathbb{R}_+^p}{\text{argmin}} - \sum_{j=1}^p \beta_j \widehat{\text{HSIC}}(X_j, Y) + \frac{1}{2} \sum_{i,j=1}^p \beta_i \beta_j \widehat{\text{HSIC}}(X_i, X_j)
$$

2 $\beta^T M \beta + \lambda \, \beta^T \! w,$ \widehat{HSTC} $_N(X_j,Y)$ and

Post-selection Inference (PSI)

Polyhedral Lemma[\[4\]](#page-0-3)

Let $Y \sim \mathcal{N}(\mu, \Sigma)$ with $\mu \in \mathbb{R}^q$ and $\Sigma \in \mathbb{R}^{q \times q}$, $\eta \in \mathbb{R}^q$, $A \in \mathbb{R}^{m \times q}$ and $b \in \mathbb{R}^m$. **Then,** $\eta^T Y |\{AY \leq b\} \sim \text{TruncatedNormal}(\eta^T \mu, \eta^T \Sigma \eta, \mathcal{V}^-, \mathcal{V}^+).$

Github: tobias-freidling/hsic-lasso-psi Paper 2575 - ICML 2021 taf40@cam.ac.uk

- **Inference targets**: HSIC-target $H_j = e_j^T H \Rightarrow \eta = e_j$; partial target (similar $\textbf{to regression coefficient)}$ $\hat{\beta}^{\text{par}}_{j,S} = M^{-1}_{SS} \tilde{H}_S \ \Rightarrow \ \eta = (M^{-1}_{SS} H \,|\, 0)^T \mathrm{e}_j.$
- Polyhedral Lemma for **asymptotically normal** random variables

 λ *j*) + λ *||β*||₁.

- **RNAseq data from the Broad Institute** Portal
- **Response: type of blood cell** Features: 26 593 genes, Sar
- . Half of the data used for scr and choice of λ with cross-U-statistics estimator of size
- · HSIC-Lasso selects 13 features significant
- **Found potentially new mole** Confidence statement on selected features

PSI with HSIC-Lasso

- **Normal HSIC-Lasso:** $\hat{\beta} = \arg\!\min_{\beta \in \mathbb{R}}$ *p* P_{+} – $\beta^{T}H + \frac{1}{2}$ where $M_{ij} = \text{HSIC}(i)$ \widehat{HSTC} (X_i, X_j) , asymptotically normal $H_j = \text{HSIC}$ weight vector *w*.
- **Affine linear selection: Selection procedure** For positive definite M , $\{\hat{S} = S\} = \{A(H_S, H_{S^c})\}$

$$
\hat{S} = \{j : \hat{\beta}_j > 0\}
$$

\n
$$
H_{S^c}^T \leq b\} \text{ with}
$$

\n
$$
\begin{pmatrix} -M_{SS}^{-1}w_S \\ w_{S^c} - M_{SS}^{-1}M_{SS}^{-1}w_S \end{pmatrix}.
$$

$$
A = -\frac{1}{\lambda} \begin{pmatrix} M_{SS}^{-1} & | & 0 \\ M_{SCS} M_{SS}^{-1} & | & \text{Id} \end{pmatrix}, \quad b = 0
$$

Application in Practice

- Challenges: (1) Positive definiteness of *M*, (2) Computational costs of HSIC-estimation, (3) choice of *λ*
- Solution: (1) Positive definite approximation, (2) & (3) Set data aside to screen for relevant features and estimate *λ*
- Flexibility: 2 asymptotically normal HSIC-estimators^{[\[5\]](#page-0-4)} with adjustable size; Adaptive- and non-adaptive Lasso penalty; Hyper-parameter choice via cross-validation or AIC

¹DPMMS, University of Cambridge ²Graduate School of Economics, Osaka University 3 Center for Advanced Intelligence Project (AIP), RIKEN, Kyoto $\ ^4$ Graduate School of Informatics, Kyoto University

Real-world Data

References

[1] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical dependence with Hilbert-Schmidt norms. In *Algorithmic learning theory. 16th international conference, ALT 2005*. Berlin: Springer, 2005.

[2] Makoto Yamada, Yuta Umezu, Kenji Fukumizu, and Ichiro Takeuchi. Post Selection Inference with Kernels. Proceedings of

[3] Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Eric P. Xing, and Masashi Sugiyama. High-dimensional feature selection by

[4] Jason D. Lee, Dennis L. Sun, Yuekai Sun, and Jonathan E. Taylor. Exact post-selection inference, with application to the Lasso.

-
- Machine Learning Research, 2018.
- feature-wise kernelized Lasso. *Neural Computation*, 2014.
- *The Annals of Statistics*, 2016.
-

[5] Jen Ning Lim, Makoto Yamada, Wittawat Jitkrittum, Yoshikazu Terada, Shigeyuki Matsui, and Hidetoshi Shimodaira. More Powerful Selective Kernel Tests for Feature Selection. Proceedings of Machine Learning Research, 2020.