Post-Selection Inference with HSIC-Lasso

Tobias Freidling¹, Benjamin Poignard^{2,3}, Héctor Climente-González³, Makoto Yamada^{3,4}

¹DPMMS, University of Cambridge ²Graduate School of Economics, Osaka University ³Center for Advanced Intelligence Project (AIP), RIKEN, Kyoto ⁴Graduate School of Informatics, Kyoto University

Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt Independence Criterion (HSIC) measures the dependence between two random variables *X* and *Y*:

$$\begin{aligned} \mathsf{HSIC}(X,Y) = & \, \mathsf{E}_{X,X',Y,Y'} \big[k(X,X') \, \mathit{I}(Y,Y') \big] \\ & + \, \mathsf{E}_{X,X'} \big[k(X,X') \big] \, \mathsf{E}_{Y,Y'} \big[\mathit{I}(Y,Y') \big] \\ & - \, 2 \, \mathsf{E}_{X,Y} \big[\mathsf{E}_{X'} \big[k(X,X') \big] \, \mathsf{E}_{Y'} \big[\mathit{I}(Y,Y') \big] \big] \, , \end{aligned}$$

where k and l are kernel functions and X' and Y' are i.i.d. copies.

- ▶ $HSIC(X, Y) \ge 0$, $HSIC(X, Y) = 0 \Leftrightarrow X \perp Y$
- Modelfree, i.e. no assumptions on distribution of X and Y required

Feature Selection

Goal: Selection of (non-redundant) subset of features X_1, \ldots, X_p that are strongly associated with response Y.

- ► HSIC-ordering: Select k features for which $\widehat{\mathsf{HSIC}}(Y, X_j)$ is largest
- ▶ **HSIC-Lasso**: Select *j*-th feature if $\hat{\beta}_i$ is positive, where

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^p_+}{\mathsf{argmin}} \ - \sum_{j=1}^p \beta_j \, \widehat{\mathsf{HSIC}}(X_j, \, Y) + \frac{1}{2} \sum_{i,j=1}^p \beta_i \beta_j \, \widehat{\mathsf{HSIC}}(X_i, X_j) + \lambda \|\beta\|_1.$$

Post-selection Inference (PSI)

To guarantee correct inference on the selected features, account for/condition on the information encapsulated in the selection. For (affine) linear inference target $\eta^T \mu$ and selection procedure $\{AY \leq b\}$:

Polyhedral Lemma

Let $Y \sim \mathcal{N}(\mu, \Sigma)$ with $\mu \in \mathbb{R}^q$ and $\Sigma \in \mathbb{R}^{q \times q}$, $\eta \in \mathbb{R}^q$, $A \in \mathbb{R}^{m \times q}$ and $b \in \mathbb{R}^m$. Then,

$$\eta^T Y | \{AY \leq b\} \sim \text{TruncatedNormal}(\eta^T \mu, \eta^T \Sigma \eta, \mathcal{V}^-, \mathcal{V}^+),$$

where V^- and V^+ are the lower and upper truncation point.

PSI with HSIC-Lasso

Normal HSIC-Lasso:

$$\hat{\beta} = \underset{\beta \in \mathbb{R}_{+}^{p}}{\operatorname{argmin}} \ -\beta^{T} H + \frac{1}{2} \beta^{T} M \beta + \lambda \beta^{T} W,$$

where $M_{ij} = \widehat{\mathsf{HSIC}}(X_i, X_j)$, asymptotically normal $H_j = \widehat{\mathsf{HSIC}}_N(X_j, Y)$ and weight vector w.

▶ Affine linear selection: Selection procedure $\hat{S} = \{j : \hat{\beta}_j > 0\}$ For positive definite M, $\{\hat{S} = S\} = \{A(H_S, H_{S^c})^T \leq b\}$ with

$$A = -\frac{1}{\lambda} \left(\begin{smallmatrix} M_{SS}^{-1} & \mid & 0 \\ M_{S^cS} M_{SS}^{-1} & \mid & \mathrm{Id} \end{smallmatrix} \right), \quad b = \left(\begin{smallmatrix} -M_{SS}^{-1} & w_S \\ w_{S^c} - M_{S^cS} M_{SS}^{-1} & w_S \end{smallmatrix} \right).$$

- ▶ Inference targets: HSIC-target $H_j = e_j^T H \Rightarrow \eta = e_j$; partial target $\hat{\beta}_{i,S}^{\text{par}} = M_{SS}^{-1} H_S \Rightarrow \eta = (M_{SS}^{-1} H \mid 0)^T e_j$.
- Polyhedral Lemma for asymptotically normal random variables

Application in Practice

Challenges

- ▶ Positive definiteness of *M*: positive definite approximation
- Computational costs of HSIC-estimation and choice of λ: set data aside to screen for relevant features and estimate λ

Flexibility

- 2 asymptotically normal HSIC-estimators (block and incomplete U-statistics)
- Adaptive and non-adaptive Lasso-penalty
- Hyper-parameter choice via cross-validation or AIC

Type-I Error and Power

Figure: Empirical type-I error for different toy models

Figure: Empirical power for discrete, linear and non-linear toy model

Real-World Data

Evaluation of our proposal on three datasets and comparison with post-selection inference with HSIC-ordering:

- Parsimonious model
- Discovering potentially novel dependencies
- Effective reduction of selecting strongly correlated features
- Utility of partial target fostering a more interpretable view on the data

Slides of the 5-minute presentation following.

Feature Selection with HSIC-Lasso

Hilbert-Schmidt Independence Criterion (HSIC)

- ▶ HSIC(X, Y): measure of dependence between X and Y
- ▶ $HSIC(X, Y) \ge 0$, $HSIC(X, Y) = 0 \Leftrightarrow X \perp Y$
- ▶ Model-free: no assumptions on distribution of *X* and *Y*

Feature Selection

Data sample from response Y and features X_1, \dots, X_p

- ► HSIC-ordering: Select k features for which $\widehat{\mathsf{HSIC}}(Y, X_j)$ is largest
- ▶ HSIC-Lasso: Select *j*-th feature if $\hat{\beta}_i$ is positive, where

$$\hat{\beta} = \underset{\beta \in \mathbb{R}_+^p}{\mathsf{argmin}} \ - \sum_{i=1}^p \beta_i \, \widehat{\mathsf{HSIC}}(X_j, \, Y) + \frac{1}{2} \sum_{i,i=1}^p \beta_i \beta_j \, \widehat{\mathsf{HSIC}}(X_i, X_j) + \lambda \|\beta\|_1.$$

Post-Selection Inference with Polyhedral Lemma

For correct inference on $HSIC(Y, X_j)$ (HSIC-target) we condition on the selection procedure.

Polyhedral Lemma

Let $Y \sim \mathcal{N}(\mu, \Sigma)$ with $\mu \in \mathbb{R}^n$ and $\Sigma \in \mathbb{R}^{n \times n}$, $\eta \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then

$$\eta^T Y | \{AY \leq b\} \sim \mathsf{TN}(\eta^T \mu, \, \eta^T \Sigma \eta, \, \mathcal{V}^-, \mathcal{V}^+).$$

- Prove asymptotic version of Polyhedral Lemma
- Use asymptotically normal HSIC-estimators
- Show that HSIC-Lasso selection is affine linear
- ► Express HSIC-target in the form $\eta^T Y$ and introduce the novel partial target

Practical Application

Computational costs:

- High-dimensional data: upstream screening stage to reduce features considered by HSIC-Lasso
- Less expensive than multiscale bootstrap

Choice of the hyper-parameter λ :

- Set data aside to estimate λ
- Cross validation and AIC; adaptive and non-adaptive Lasso penalty

We give some intuition for different set-ups.

Type-I Error and Power

Figure: Empirical type-I error for different toy models

Figure: Empirical power for discrete, linear and non-linear toy model

Real-World Data

Evaluation of our proposal on three datasets and comparison with post-selection inference with HSIC-ordering:

- Parsimonious model
- Discovering potentially novel dependencies
- Effective reduction of selecting strongly correlated features
- Utility of partial target fostering a more interpretable view on the data