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Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt Independence Criterion (HSIC) measures the
dependence between two random variables X and Y:

HSIC(X, Y) =Ex x: v,y [k(X,X") I(Y,Y')]
+ EX7X/ [k(X, X/)] Ey7y/ [/( Y, Y/)]
2By [Ex [KCX X s 1Y, Y]],

where k and / are kernel functions and X’ and Y’ are i.i.d. copies.

» HSIC(X,Y) >0, HSIC(X,Y)=0&<XL1Y
» Modelfree, i.e. no assumptions on distribution of X and Y
required



Feature Selection

Goal: Selection of (non-redundant) subset of features Xj, ..., Xp
that are strongly associated with response Y.

» HSIC-ordering: Select k features for which H/SE(Y,XI-) is
largest
» HSIC-Lasso: Select j-th feature if Bj is positive, where

A = argmin — Zﬁ/ HSIC(X]7 Y)+ Z BiB; HS|C(X X;) + AlIBl-

BER] j=1 lj1



Post-selection Inference (PSI)

To guarantee correct inference on the selected features, account
for/condition on the information encapsulated in the selection.
For (affine) linear inference target ;. and selection procedure
{AY < b}:

Polyhedral Lemma

Let Y ~ NV(p,X) with p € R9and © € R9*9,n € R9, A€ R™9 and
b € R™. Then,

nTY|{AY < b} ~ TruncatedNormal(nTu, n'¥n, V=, V),

where V™~ and V' are the lower and upper truncation point.



PSI with HSIC-Lasso

» Normal HSIC-Lasso:

B =argmin —8TH+ 1 BTMB + 23w,
BER 2

where M = WSI\C(X,, X;), asymptotically normal H; = H/SI\CN(Xj, Y)
and weight vector w.

» Affine linear selection: Selection procedure S = {j: B, > 0}
For positive definite M, {5 = S} = {A(Hs, Hs:)™ < b} with

R N A V- _ —Mgd ws
A - _X <MSCSMSS1 | Id ! b - WSC_MSCSM§; Ws ’
» Inference targets: HSIC-target H; = ejTH = 1 = e¢j; partial target
P8 = MggHs = n=(MggH|[0)'e;.

» Polyhedral Lemma for asymptotically normal random variables



Application in Practice

Challenges
» Positive definiteness of M: positive definite approximation

» Computational costs of HSIC-estimation and choice of \: set
data aside to screen for relevant features and estimate \

Flexibility
» 2 asymptotically normal HSIC-estimators (block and
incomplete U-statistics)
» Adaptive and non-adaptive Lasso-penalty
» Hyper-parameter choice via cross-validation or AIC



Type-| Error and Power
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Real-World Data

Evaluation of our proposal on three datasets and comparison with
post-selection inference with HSIC-ordering:

» Parsimonious model
» Discovering potentially novel dependencies
» Effective reduction of selecting strongly correlated features

» Utility of partial target fostering a more interpretable view on
the data



Slides of the 5-minute presentation following.



Feature Selection with HSIC-Lasso

Hilbert-Schmidt Independence Criterion (HSIC)

» HSIC(X, Y): measure of dependence between X and Y
» HSIC(X,Y) >0, HSIC(X,Y)=0&<XL1Y
» Model-free: no assumptions on distribution of X and Y

Feature Selection

Data sample from response Y and features Xi,..., X,
» HSIC-ordering: Select k features for which H/SE(Y,XI-) is
largest

» HSIC-Lasso: Select j-th feature if Bj is positive, where

B = argmin — ZB, HSlC(X,, Y)+ Z BiBj HSIC(X,, Xj) + AllBll1-

BER, j=1 I/ 1



Post-Selection Inference with Polyhedral Lemma

For correct inference on HSIC(Y, X;) (HSIC-target) we condition on
the selection procedure.

Polyhedral Lemma

Let Y ~ N(p, X) with p e R"and ¥ € R™", n e R", Ae R™" and
b e R™ Then

0" Y{AY < b} ~ TN(n'u, n'En, V=, V).

» Prove asymptotic version of Polyhedral Lemma
Use asymptotically normal HSIC-estimators
Show that HSIC-Lasso selection is affine linear

Express HSIC-target in the form 5 Y and introduce the novel
partial target

v

v

v



Practical Application

Computational costs:

» High-dimensional data: upstream screening stage to reduce
features considered by HSIC-Lasso

» Less expensive than multiscale bootstrap

Choice of the hyper-parameter \:
» Set data aside to estimate A

» Cross validation and AIC; adaptive and non-adaptive Lasso
penalty

We give some intuition for different set-ups.



Type-| Error and Power

0.10
—— Block, B=5
0.08 —— Block, B=10
‘E' —— incomplete, I=1
5 0.06
o | =
>
2
0.02
0.00
500 1000 1500 500 1000 1500 500 1000 1500 500 1000 1500
sample size sample size sample size sample size
Figure: Empirical type-I error for different toy models
1.0 —— Proposal, Block, B=10
—=— Proposal, inc., I=1
08 —— Multi, Block, B=10
“ —— Multi, inc., I=1
506 —
g inear
Q04
. E
0.0
00 05 1.0 15 20 00 05 10 15 20 00 05 10 15 20

theta theta theta

Figure: Empirical power for discrete, linear and non-linear toy model



Real-World Data

Evaluation of our proposal on three datasets and comparison with
post-selection inference with HSIC-ordering:

» Parsimonious model
» Discovering potentially novel dependencies
» Effective reduction of selecting strongly correlated features

» Utility of partial target fostering a more interpretable view on
the data



