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Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt Independence Criterion (HSIC) measures the
dependence between two random variables X and Y :
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[
k(X ,X ′) l(Y ,Y ′)

]
+ EX ,X ′

[
k(X ,X ′)

]
EY ,Y ′

[
l(Y ,Y ′)

]
− 2 EX ,Y

[
EX ′
[
k(X ,X ′)

]
EY ′
[
l(Y ,Y ′)

]]
,

where k and l are kernel functions and X ′ and Y ′ are i.i.d. copies.

I HSIC(X ,Y ) ≥ 0, HSIC(X ,Y ) = 0 ⇔ X ⊥⊥ Y
I Modelfree, i.e. no assumptions on distribution of X and Y

required



Feature Selection

Goal: Selection of (non-redundant) subset of features X1, . . . ,Xp
that are strongly associated with response Y .

I HSIC-ordering: Select k features for which ĤSIC(Y ,Xj) is
largest

I HSIC-Lasso: Select j-th feature if β̂j is positive, where

β̂ = argmin
β∈Rp

+

−
p∑

j=1

βj ĤSIC(Xj ,Y ) +
1
2

p∑
i,j=1

βiβj ĤSIC(Xi ,Xj ) + λ‖β‖1.



Post-selection Inference (PSI)

To guarantee correct inference on the selected features, account
for/condition on the information encapsulated in the selection.
For (affine) linear inference target ηTµ and selection procedure
{AY ≤ b}:

Polyhedral Lemma

Let Y ∼ N (µ,Σ) with µ ∈ Rq and Σ ∈ Rq×q, η ∈ Rq, A ∈ Rm×q and
b ∈ Rm. Then,

ηT Y |{AY ≤ b} ∼ TruncatedNormal(ηTµ, ηT Ση, V−,V+),

where V− and V+ are the lower and upper truncation point.



PSI with HSIC-Lasso

I Normal HSIC-Lasso:

β̂ = argmin
β∈Rp

+

−βT H +
1
2
βT Mβ + λβTw ,

where Mij = ĤSIC(Xi ,Xj ), asymptotically normal Hj = ĤSICN(Xj ,Y )
and weight vector w .

I Affine linear selection: Selection procedure Ŝ = {j : β̂j > 0}
For positive definite M, {Ŝ = S} = {A (HS,HSc )T ≤ b} with

A = −1
λ

(
M−1

SS | 0

MSc SM−1
SS | Id

)
, b =

(
−M−1

SS wS

wSc−MSc SM−1
SS wS

)
.

I Inference targets: HSIC-target Hj = eT
j H ⇒ η = ej ; partial target

β̂par
j,S = M−1

SS HS ⇒ η = (M−1
SS H |0)T ej .

I Polyhedral Lemma for asymptotically normal random variables



Application in Practice

Challenges
I Positive definiteness of M: positive definite approximation
I Computational costs of HSIC-estimation and choice of λ: set

data aside to screen for relevant features and estimate λ

Flexibility
I 2 asymptotically normal HSIC-estimators (block and

incomplete U-statistics)
I Adaptive and non-adaptive Lasso-penalty
I Hyper-parameter choice via cross-validation or AIC



Type-I Error and Power
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Figure: Empirical type-I error for different toy models
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Figure: Empirical power for discrete, linear and non-linear toy model



Real-World Data

Evaluation of our proposal on three datasets and comparison with
post-selection inference with HSIC-ordering:

I Parsimonious model
I Discovering potentially novel dependencies
I Effective reduction of selecting strongly correlated features
I Utility of partial target fostering a more interpretable view on

the data



Slides of the 5-minute presentation following.



Feature Selection with HSIC-Lasso

Hilbert-Schmidt Independence Criterion (HSIC)

I HSIC(X ,Y ): measure of dependence between X and Y
I HSIC(X ,Y ) ≥ 0, HSIC(X ,Y ) = 0 ⇔ X ⊥⊥ Y
I Model-free: no assumptions on distribution of X and Y

Feature Selection
Data sample from response Y and features X1, . . . ,Xp

I HSIC-ordering: Select k features for which ĤSIC(Y ,Xj) is
largest

I HSIC-Lasso: Select j-th feature if β̂j is positive, where

β̂ = argmin
β∈Rp

+

−
p∑

j=1

βj ĤSIC(Xj ,Y ) +
1
2

p∑
i,j=1

βiβj ĤSIC(Xi ,Xj ) + λ‖β‖1.



Post-Selection Inference with Polyhedral Lemma

For correct inference on HSIC(Y ,Xj) (HSIC-target) we condition on
the selection procedure.

Polyhedral Lemma

Let Y ∼ N (µ,Σ) with µ ∈ Rn and Σ ∈ Rn×n, η ∈ Rn, A ∈ Rm×n and
b ∈ Rm. Then

ηT Y |{AY ≤ b} ∼ TN(ηTµ, ηTΣη, V−,V+).

I Prove asymptotic version of Polyhedral Lemma
I Use asymptotically normal HSIC-estimators
I Show that HSIC-Lasso selection is affine linear
I Express HSIC-target in the form ηT Y and introduce the novel

partial target



Practical Application

Computational costs:
I High-dimensional data: upstream screening stage to reduce

features considered by HSIC-Lasso
I Less expensive than multiscale bootstrap

Choice of the hyper-parameter λ:
I Set data aside to estimate λ
I Cross validation and AIC; adaptive and non-adaptive Lasso

penalty

We give some intuition for different set-ups.
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Real-World Data

Evaluation of our proposal on three datasets and comparison with
post-selection inference with HSIC-ordering:

I Parsimonious model
I Discovering potentially novel dependencies
I Effective reduction of selecting strongly correlated features
I Utility of partial target fostering a more interpretable view on

the data


