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Post-selection Inference - Toy Example

Linear regression model with 50 features and sample size 300.

Yi =

50∑
j=1

Xijβj + εi, εi
i.i.d.∼ N (0, 1)

Task: Select the 5 most influential features and construct 90% -
confidence intervals for them.
Data generation: Draw standardnormal random numbers for X and ε,
and set βj = 0 for all j ∈ {1, . . . , 50}.
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Post-selection Inference

Problem: Hypothesis tests and confidence interval can be seriously
flawed when the information encapsulated in the selection is not
accounted for.

Solution: Inference conditional on selection information.

In the example: S = {16, 30, 32, 35, 41}, Sc = {1, . . . , 50} \ S

P
(
β16 ∈ C

∣∣∣|β̂16| ≥ |β̂j | ∀ j ∈ Sc
)
≥ 0.9.

More generally, we are interested in the distribution of ηTY |{AY ≤ b}
for η ∈ Rn, A ∈ Rq×n, b ∈ Rq.
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Post-selection Inference with Polyhedral Lemma

Let F
[a,b]
µ,σ2 denote the cdf of a N (µ, σ2) truncated to the interval [a, b],

that is

F
[a,b]
µ,σ2(x) =

Φ(x−µσ )− Φ(a−µσ )

Φ( b−µσ )− Φ(a−µσ )
,

where Φ is the cdf of N (0, 1).

Theorem (Polyhedral Lemma, Lee et al. 2016)

Let Y ∼ N (µ,Σ), then

F
[V−(z),V+(z)]

ηTµ,ηT Ση
(ηTY )|{AY ≤ b} ∼ U (0, 1),

where z =
(
Id− (ηTΣη)−1ΣηηT

)
Y and V− and V+ are known.

Note: If X is a random variable and F is its cdf, then F (X) ∼ U (0, 1).
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Hilbert-Schmidt Independence Criterion (HSIC)

Idea: Embed probability measures PXY and PXPY in Reproducing
Kernel Hilbert Space (RKHS) and compare them through the
MMD-distance in RKHS

Definition (HSIC, Gretton et al. 2005)

Let X and Y be random variables and k(·, ·) and l(·, ·) kernel
functions. The Hilbert-Schmidt independence criterion is given by

HSIC(X,Y ) = Ex,x′,y,y′ [k(x, x′)l(y, y′)] + Ex,x′ [k(x, x′)] Ey,y′ [l(y, y
′)]

− 2 Ex,y
[
Ex′ [k(x, x′)]Ey[l(y, y

′)]
]
,

where Ex,x′,y,y′ denotes the expectation over independent pairs (x, y)
and (x′, y′).

Properties:

I No assumptions on X,Y and their relationship. Modelfree!
I HSIC(X,Y ) ≥ 0, HSIC(X,Y ) = 0 ⇔ X ⊥⊥ Y .
I Classification and regression settings with suitable kernels possible.
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HSIC estimators I

Suppose that we are given an i.i.d. sample {yi, xi}ni=1 and define K
and L by Kij = k(xi, xj) and Lij = l(yi, yj) for i, j ∈ {1, . . . , n}.
K̃ = K − diag(K), L̃ = L− diag(L) and Γ = Id− 1

n11T .

Biased estimator (Gretton et al. 2005):

ĤSICb(X,Y ) = (n− 1)−2 tr(KΓLΓ)

Unbiased estimator (Song et al. 2012):

ĤSICu(X,Y ) =
1

n(n− 3)

(
tr(K̃L̃) +

1T K̃1 1T L̃1

(n− 1)(n− 2)
− 2

n− 2
1T K̃L̃1

)

If X and Y are independent, for both estimators n ĤSIC(X,Y ) does
not converge to a Gaussian random variable. /



HSIC estimators I

Suppose that we are given an i.i.d. sample {yi, xi}ni=1 and define K
and L by Kij = k(xi, xj) and Lij = l(yi, yj) for i, j ∈ {1, . . . , n}.
K̃ = K − diag(K), L̃ = L− diag(L) and Γ = Id− 1

n11T .

Biased estimator (Gretton et al. 2005):
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HSIC estimators II

Block estimator (Zhang et al. 2018):

Divide sample into blocks of size B, {{ybi , xbi}Bi=1}
n/B
b=1 .

ĤSICblock(X,Y ) =
1

n/B

n/B∑
b=1

ĤSICu(Xb, Y b)

Incomplete U-statistics estimator (Lim et al. 2020):
HSIC is a U-statistic of degree 4, i.e. there exists h such that
ĤSICu(X,Y ) =

(
n
4

)−1∑
(i,j,q,r)∈Sn,4

h(i, j, q, r), where Sn,4 is the set

of all 4-subsets of {1, . . . , n}. Let D ⊂ Sn,4 and |D| = m = O(n), then

ĤSICinc(X,Y ) = m−1
∑

(i,j,q,r)∈D

h(i, j, q, r).

Both
√
n/B ĤSICblock(X,Y ) and

√
m ĤSICinc(X,Y ) are

asymptotically normal. ,
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ĤSICinc(X,Y ) = m−1
∑

(i,j,q,r)∈D

h(i, j, q, r).

Both
√
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HSIC-Lasso

Goal: Use HSIC to select non-redundant features.

Let L̄ = ΓLΓ and K̄(j) = ΓK(j)Γ, j ∈ {1, . . . , p}. The HSIC-Lasso
(Yamada et al. 2014) solution is given by

β̂ = argmin
β≥0

1

2
‖L̄−

p∑
j=1

βjK̄
(k)‖2Frob + λ‖β‖1

= argmin
β≥0

−
p∑
j=1

βjĤSICb(X(j), Y ) +
1

2

p∑
i,j=1

βiβjĤSICb(X(i), X(j)) + λ‖β‖1

I 1st term selects influential covariates

I 2nd term punishes selection of dependent variables

I 3rd term enforces sparsity



Post-selection Inference with HSIC-Lasso

Goal: Create PSI-procedure for HSIC-Lasso

I Version of Polyhedral Lemma for asymptotically normal random
variables

I Asymptotically normal HSIC-Lasso

I Expression for inference targets

I Characterisation of selection in affine linear way



Normal HSIC-Lasso and Inference Targets

We replace the biased estimator with the block or the incomplete
U-statistics estimator, for example

β̂ = argmin
β≥0

−
p∑
j=1

βjĤSICblock(X(j), Y ) +
1

2

p∑
i,j=1

βiβjĤSIC(X(i), X(j)) + λ‖β‖1

=: argmin
β≥0

−βTH +
1

2
βTMβ + λ‖β‖1,

where Hj = ĤSICblock(X(j), Y ) and Mij = ĤSIC(X(i), X(j)). We

define the selection procedure as Ŝ := {j : β̂j > 0}, denote its value by
S and set Sc = {1, . . . , p} \ S. Moreover, we assume that M is positive
definite.

Partial target: In analogy with linear regression, we look at “partial
regression coefficients” β̂par

j = eTj M
−1
SSHS = eTj (M−1

SS |0)H =: ηTH.

HSIC-target: Hj = eTj H =: ηTH.
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Affine Linear Selection

Partial target:
Similarly to linear regression with Lasso-regularisation, the selection
event can be characterised using the Karush-Kuhn-Tucker (KKT)
conditions. We get

1

λ

(
−M−1

SS | 0

−MScSM
−1
SS | Id

)
H ≤

(
−M−1

SS 1

1−MScSM
−1
SS 1

)
.

The truncation points V− and V+ are given by the Polyhedral Lemma.

HSIC-target:
We define β̂−j as β̂ with 0 at the j-th position and can directly derive
the truncation points V− and V+:

V− = λ+ (Mβ̂−j)j , V+ =∞.



Testing

For all j ∈ S, we conduct the tests

H0 : β̂par
j = 0 vs. H1 : β̂par

j > 0 and

H0 : Hj = 0 vs. H1 : Hj > 0.

The p-value is given by p = 1− F [V−,V+]

0,ηT Ση
(ηTH), where η is set

according to the target.



Practical Application

Challenges

I Positive definiteness of M : positive definite approximation

I Computational costs of HSIC-estimation: screen for relevant
features entering HSIC-Lasso

I Choice of hyper-parameter: set data aside to estimate λ via
cross-validation or AIC

Outline of algorithm

I Split data into two folds
I 1st fold:

I Screening of relevant features
I Estimation of λ

I 2nd fold:
I Computing H and M
I HSIC-Lasso estimate β̂ and obtaining selected indices S
I Post-selection inference for targets
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Toy Models

Type-I error:

(M1)
Y ∼ Ber

(
g
(∑10

i=1Xi

))
, X ∼ N (050,Ξ),

g(x) = ex/(1 + ex),

(M2)
Y =

∑5
i=1XiXi+5 + ε, X ∼ N (050,Ξ),

ε ∼ N (0, σ2),

where Ξ is either set to Id or Ξij = 0.5|i−j|, and σ2 is chosen to be a
fifth of the variance in the X-terms.

Power: We replace X1 by θX1 in model (M1) and denote it (M1’) and
introduce

(M3)
Y = θX1 +

∑10
i=2Xi + ε, X ∼ N (050, Id),

ε ∼ N (0, σ2),

(M4)
Y = θ h(X1) +

∑10
i=2Xi + ε, X ∼ N (050, Id),

h(x) = x− x3, ε ∼ N (0, σ2).



Type-I Error and Power
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Performance on Real-World Data

I RNAseq data from the Broad
Institute’s Single Cell Portal

I Response: type of blood cell (10-level
categorical), Features: 26 593 genes,
Sample size: 1 078

I Half of the data used for screening
1 000 features and choice of λ with
cross-validation; Incomplete
U-statistics estimator of size 20 and
partial target

I HSIC-Lasso selects 13 features; 9 of
them are significant

I Found potentially new molecular
signatures; Confidence statement on
selected features

Gene p-value

ACTB 0.961

IGJ 0.001

CD14 0.026

LYZ 0.001

FCER1A 0.001

MTRNR2L2 0.420

FCGR3A 0.001

RPS3A 0.001

FTL 0.968

TMSB4X 0.012

HLA-DPA1 0.001

TVAS5 0.553

IFI30 0.002



Potential Future Work

I Wider investigation of method, e.g. split ratio, size of estimators,
estimation of λ, behaviour for correlated features

I Development of/ Integration into a Python-package

I Application to more datasets (analysis of Turkish Student and
Communities & Crimes data in the paper and supplement)

I Integration of screening and hyper-parameter estimation in
PSI-procedure

I Improvement through novel ideas in PSI



Thank you for your attention!

Paper: Proceedings of ICML 2021 and on arXiv (2010.15659)

Code: Github tobias-freidling/hsic-lasso-psi

Slides: Website tobias-freidling.onrender.com

http://proceedings.mlr.press/v139/freidling21a.html
https://arxiv.org/abs/2010.15659
https://github.com/tobias-freidling/hsic-lasso-psi
https://tobias-freidling.onrender.com/talk/
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