Post-Selection Inference with HSIC-Lasso

Tobias Freidling 1 , Benjamin Poignard 2,3 , Héctor Climente-González 3 , Makoto Yamada 3,4

 1 DPMMS, University of Cambridge 2 Graduate School of Economics, Osaka University 3 Center for Advanced Intelligence Project (AIP), RIKEN, Kyoto ⁴Graduate School of Informatics, Kyoto University

August 31, 2021 High-dimensional Statistical Modeling Team Seminar

[Post-selection Inference \(PSI\)](#page-2-0)

[Hilbert-Schmidt Independence Criterion \(HSIC\)](#page-10-0)

[Post-selection Inference with HSIC-Lasso](#page-18-0)

[Evaluation on Artificial Data](#page-25-0)

[Performance on Real-World Data](#page-27-0)

Post-selection Inference - Toy Example

Linear regression model with 50 features and sample size 300.

$$
Y_i = \sum_{j=1}^{50} X_{ij} \beta_j + \varepsilon_i, \qquad \varepsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)
$$

Task: Select the 5 most influential features and construct 90% confidence intervals for them.

Data generation: Draw standardnormal random numbers for X and ε , and set $\beta_j = 0$ for all $j \in \{1, \ldots, 50\}$.

Post-selection Inference - Toy Example

Linear regression model with 50 features and sample size 300.

$$
Y_i = \sum_{j=1}^{50} X_{ij} \beta_j + \varepsilon_i, \qquad \varepsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)
$$

Task: Select the 5 most influential features and construct 90% confidence intervals for them.

Data generation: Draw standardnormal random numbers for X and ε , and set $\beta_j = 0$ for all $j \in \{1, \ldots, 50\}$.

Solution: Inference conditional on selection information.

Solution: Inference conditional on selection information.

In the example: $S = \{16, 30, 32, 35, 41\}, S^c = \{1, \ldots, 50\} \setminus S$

$$
\mathbb{P}\left(\beta_{16}\in C\middle|\left|\hat{\beta}_{16}\right|\geq\left|\hat{\beta}_{j}\right|\,\forall\,j\in S^{c}\right)\geq0.9.
$$

Solution: Inference conditional on selection information.

In the example: $S = \{16, 30, 32, 35, 41\}, S^c = \{1, \ldots, 50\} \setminus S$

$$
\mathbb{P}\left(\beta_{16}\in C\middle|\left|\hat{\beta}_{16}\right|\geq\left|\hat{\beta}_{j}\right|\,\forall\,j\in S^{c}\right)\geq0.9.
$$

More generally, we are interested in the distribution of $\eta^T Y|\{AY\leq b\}$ for $\eta \in \mathbb{R}^n, A \in \mathbb{R}^{q \times n}, b \in \mathbb{R}^q$.

Let $F_{\mu,\sigma^2}^{[a,b]}$ denote the cdf of a $\mathcal{N}(\mu,\sigma^2)$ truncated to the interval $[a,b],$ that is

$$
F_{\mu,\sigma^2}^{[a,b]}(x) = \frac{\Phi(\frac{x-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})}{\Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})},
$$

where Φ is the cdf of $\mathcal{N}(0, 1)$.

Let $F_{\mu,\sigma^2}^{[a,b]}$ denote the cdf of a $\mathcal{N}(\mu,\sigma^2)$ truncated to the interval $[a,b],$ that is

$$
F_{\mu,\sigma^2}^{[a,b]}(x) = \frac{\Phi(\frac{x-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})}{\Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})},
$$

where Φ is the cdf of $\mathcal{N}(0, 1)$.

Theorem (Polyhedral Lemma, Lee et al. [2016\)](#page-30-0)

Let $Y \sim \mathcal{N}(\mu, \Sigma)$, then

$$
F_{\eta^T\mu,\eta^T\Sigma\eta}^{[\mathcal{V}^-(z),\mathcal{V}^+(z)]}(\eta^TY)|\{AY\leq b\} \sim \mathcal{U}\left(0,1\right),\,
$$

where $z = (\text{Id} - (\eta^T \Sigma \eta)^{-1} \Sigma \eta \eta^T) Y$ and V^- and V^+ are known.

Note: If X is a random variable and F is its cdf, then $F(X) \sim \mathcal{U}(0, 1)$.

Hilbert-Schmidt Independence Criterion (HSIC)

Idea: Embed probability measures \mathbb{P}_{XY} and $\mathbb{P}_{X}\mathbb{P}_{Y}$ in Reproducing Kernel Hilbert Space (RKHS) and compare them through the MMD-distance in RKHS

Definition (HSIC, Gretton et al. [2005\)](#page-30-1)

Let X and Y be random variables and $k(\cdot, \cdot)$ and $l(\cdot, \cdot)$ kernel functions. The Hilbert-Schmidt independence criterion is given by

$$
HSIC(X, Y) = E_{x,x',y,y'}[k(x, x')l(y, y')] + E_{x,x'}[k(x, x')] E_{y,y'}[l(y, y')]
$$

- 2 E_{x,y}[E_{x'}[k(x, x')] E_y[l(y, y')]],

where $\mathrm{E}_{x,x',y,y'}$ denotes the expectation over independent pairs (x,y) and (x', y') .

Hilbert-Schmidt Independence Criterion (HSIC)

Idea: Embed probability measures \mathbb{P}_{XY} and $\mathbb{P}_{X}\mathbb{P}_{Y}$ in Reproducing Kernel Hilbert Space (RKHS) and compare them through the MMD-distance in RKHS

Definition (HSIC, Gretton et al. [2005\)](#page-30-1)

Let X and Y be random variables and $k(\cdot, \cdot)$ and $l(\cdot, \cdot)$ kernel functions. The Hilbert-Schmidt independence criterion is given by

$$
HSIC(X, Y) = E_{x,x',y,y'}[k(x, x')l(y, y')] + E_{x,x'}[k(x, x')] E_{y,y'}[l(y, y')]
$$

- 2 E_{x,y} [E_{x'}[k(x, x')] E_y[l(y, y')]],

where $\mathrm{E}_{x,x',y,y'}$ denotes the expectation over independent pairs (x,y) and (x', y') .

Properties:

- \blacktriangleright No assumptions on X, Y and their relationship. Modelfree!
- \blacktriangleright HSIC(X, Y) \geq 0, HSIC(X, Y) = 0 \Leftrightarrow X $\perp \!\!\! \perp$ Y.
- Classification and regression settings with suitable kernels possible.

HSIC estimators I

Suppose that we are given an i.i.d. sample $\{y_i,x_i\}_{i=1}^n$ and define K and L by $K_{ij} = k(x_i, x_j)$ and $L_{ij} = l(y_i, y_j)$ for $i, j \in \{1, \ldots, n\}.$ $\tilde{K} = K - \text{diag}(K)$, $\tilde{L} = L - \text{diag}(L)$ and $\Gamma = \text{Id} - \frac{1}{n}$ $\frac{1}{n}11^T$.

Biased estimator (Gretton et al. [2005\)](#page-30-1):

$$
\widehat{\text{HSIC}}_{\text{b}}(X, Y) = (n-1)^{-2} \operatorname{tr}(K\Gamma L\Gamma)
$$

Unbiased estimator (Song et al. [2012\)](#page-30-2):

$$
\widehat{\text{HSIC}}_{\text{u}}(X,Y) = \frac{1}{n(n-3)} \left(\text{tr}(\tilde{K}\tilde{L}) + \frac{\mathbf{1}^T \tilde{K} \mathbf{1} \mathbf{1}^T \tilde{L} \mathbf{1}}{(n-1)(n-2)} - \frac{2}{n-2} \mathbf{1}^T \tilde{K} \tilde{L} \mathbf{1} \right)
$$

HSIC estimators I

Suppose that we are given an i.i.d. sample $\{y_i,x_i\}_{i=1}^n$ and define K and L by $K_{ij} = k(x_i, x_j)$ and $L_{ij} = l(y_i, y_j)$ for $i, j \in \{1, \ldots, n\}.$ $\tilde{K} = K - \text{diag}(K)$, $\tilde{L} = L - \text{diag}(L)$ and $\Gamma = \text{Id} - \frac{1}{n}$ $\frac{1}{n}11^T$.

Biased estimator (Gretton et al. [2005\)](#page-30-1):

$$
\widehat{\text{HSIC}}_{\text{b}}(X, Y) = (n-1)^{-2} \operatorname{tr}(K\Gamma L\Gamma)
$$

Unbiased estimator (Song et al. [2012\)](#page-30-2):

$$
\widehat{\text{HSIC}}_{\text{u}}(X,Y) = \frac{1}{n(n-3)} \left(\text{tr}(\tilde{K}\tilde{L}) + \frac{\mathbf{1}^T \tilde{K} \mathbf{1} \mathbf{1}^T \tilde{L} \mathbf{1}}{(n-1)(n-2)} - \frac{2}{n-2} \mathbf{1}^T \tilde{K} \tilde{L} \mathbf{1} \right)
$$

If X and Y are independent, for both estimators n HSIC(X, Y) does not converge to a Gaussian random variable. \odot

HSIC estimators II

Block estimator (Zhang et al. [2018\)](#page-30-3): Divide sample into blocks of size B , $\{\{y_i^b, x_i^b\}_{i=1}^B\}_{b=1}^{n/B}$.

$$
\widehat{\text{HSIC}}_{\text{block}}(X, Y) = \frac{1}{n/B} \sum_{b=1}^{n/B} \widehat{\text{HSIC}}_{\text{u}}(X^b, Y^b)
$$

HSIC estimators II

Block estimator (Zhang et al. [2018\)](#page-30-3): Divide sample into blocks of size B , $\{\{y_i^b, x_i^b\}_{i=1}^B\}_{b=1}^{n/B}$.

$$
\widehat{\mathrm{HSIC}}_{\mathrm{block}}(X,Y) = \frac{1}{n/B} \sum_{b=1}^{n/B} \widehat{\mathrm{HSIC}}_{\mathrm{u}}(X^b, Y^b)
$$

Incomplete U-statistics estimator (Lim et al. [2020\)](#page-30-4):

HSIC is a U-statistic of degree 4, i.e. there exists h such that $\widehat{\text{HSIC}}_{\text{u}}(X, Y) = {n \choose 4}^{-1} \sum_{(i, j, q, r) \in S_{n,4}} h(i, j, q, r)$, where $\mathcal{S}_{n,4}$ is $\sum_{(i,j,q,r)\in \mathcal{S}_{n,4}}^n h(i,j,q,r),$ where $\mathcal{S}_{n,4}$ is the set of all 4-subsets of $\{1, \ldots, n\}$. Let $D \subset S_{n,4}$ and $|D| = m = O(n)$, then

$$
\widehat{\text{HSIC}}_{\text{inc}}(X, Y) = m^{-1} \sum_{(i,j,q,r) \in \mathcal{D}} h(i,j,q,r).
$$

HSIC estimators II

Block estimator (Zhang et al. [2018\)](#page-30-3): Divide sample into blocks of size B , $\{\{y_i^b, x_i^b\}_{i=1}^B\}_{b=1}^{n/B}$.

$$
\widehat{\mathrm{HSIC}}_{\mathrm{block}}(X,Y) = \frac{1}{n/B} \sum_{b=1}^{n/B} \widehat{\mathrm{HSIC}}_{\mathrm{u}}(X^b, Y^b)
$$

Incomplete U-statistics estimator (Lim et al. [2020\)](#page-30-4):

HSIC is a U-statistic of degree 4, i.e. there exists h such that $\widehat{\text{HSIC}}_{\text{u}}(X,Y) = \binom{n}{4}$ $\sum_{(i,j,q,r)\in \mathcal{S}_{n,4}}^n h(i,j,q,r),$ where $\mathcal{S}_{n,4}$ is the set of all 4-subsets of $\{1, \ldots, n\}$. Let $D \subset S_{n,4}$ and $|D| = m = O(n)$, then

$$
\widehat{\text{HSIC}}_{\text{inc}}(X, Y) = m^{-1} \sum_{(i,j,q,r) \in \mathcal{D}} h(i,j,q,r).
$$

Both $\sqrt{n/B}\ \widehat{\text{HSIC}}_{\text{block}}(X, Y)$ and $\sqrt{m}\ \widehat{\text{HSIC}}_{\text{inc}}(X, Y)$ are asymptotically normal. \odot

Goal: Use HSIC to select non-redundant features. Let $\bar{L} = \Gamma L \Gamma$ and $\bar{K}^{(j)} = \Gamma K^{(j)} \Gamma, j \in \{1, ..., p\}$. The HSIC-Lasso (Yamada et al. [2014\)](#page-30-5) solution is given by

$$
\hat{\beta} = \underset{\beta \ge 0}{\text{argmin}} \frac{1}{2} \|\bar{L} - \sum_{j=1}^{p} \beta_j \bar{K}^{(k)}\|_{\text{Frob}}^2 + \lambda \|\beta\|_1
$$

=
$$
\underset{\beta \ge 0}{\text{argmin}} - \sum_{j=1}^{p} \beta_j \widehat{\text{HSIC}}_{\text{b}}(X^{(j)}, Y) + \frac{1}{2} \sum_{i,j=1}^{p} \beta_i \beta_j \widehat{\text{HSIC}}_{\text{b}}(X^{(i)}, X^{(j)}) + \lambda \|\beta\|_1
$$

- \blacktriangleright 1st term selects influential covariates
- \triangleright 2nd term punishes selection of dependent variables
- \blacktriangleright 3rd term enforces sparsity

Post-selection Inference with HSIC-Lasso

Goal: Create PSI-procedure for HSIC-Lasso

- ▶ Version of Polyhedral Lemma for asymptotically normal random variables
- \triangleright Asymptotically normal HSIC-Lasso
- Expression for inference targets
- \triangleright Characterisation of selection in affine linear way

Normal HSIC-Lasso and Inference Targets

We replace the biased estimator with the block or the incomplete U-statistics estimator, for example

$$
\hat{\beta} = \underset{\beta \ge 0}{\operatorname{argmin}} - \sum_{j=1}^{p} \beta_j \widehat{\text{HSIC}}_{\text{block}}(X^{(j)}, Y) + \frac{1}{2} \sum_{i,j=1}^{p} \beta_i \beta_j \widehat{\text{HSIC}}(X^{(i)}, X^{(j)}) + \lambda ||\beta||_1
$$

=:
$$
\underset{\beta \ge 0}{\operatorname{argmin}} - \beta^T H + \frac{1}{2} \beta^T M \beta + \lambda ||\beta||_1,
$$

where $H_j = \widehat{\text{HSIC}}_{\text{block}}(X^{(j)}, Y)$ and $M_{ij} = \widehat{\text{HSIC}}(X^{(i)}, X^{(j)})$. We define the selection procedure as $\hat{S}:=\{j\colon \hat{\beta}_j>0\}$, denote its value by S and set $S^c = \{1, \ldots, p\} \setminus S$. Moreover, we assume that M is positive definite.

We replace the biased estimator with the block or the incomplete U-statistics estimator, for example

$$
\hat{\beta} = \underset{\beta \ge 0}{\operatorname{argmin}} - \sum_{j=1}^{p} \beta_j \widehat{\text{HSIC}}_{\text{block}}(X^{(j)}, Y) + \frac{1}{2} \sum_{i,j=1}^{p} \beta_i \beta_j \widehat{\text{HSIC}}(X^{(i)}, X^{(j)}) + \lambda ||\beta||_1
$$

=:
$$
\underset{\beta \ge 0}{\operatorname{argmin}} - \beta^T H + \frac{1}{2} \beta^T M \beta + \lambda ||\beta||_1,
$$

where $H_j = \widehat{\text{HSIC}}_{\text{block}}(X^{(j)}, Y)$ and $M_{ij} = \widehat{\text{HSIC}}(X^{(i)}, X^{(j)})$. We define the selection procedure as $\hat{S}:=\{j\colon \hat{\beta}_j>0\}$, denote its value by S and set $S^c = \{1, \ldots, p\} \setminus S$. Moreover, we assume that M is positive definite.

Partial target: In analogy with linear regression, we look at "partial regression coefficients" $\hat{\beta}^{\textrm{par}}_j = \textrm{e}^{T}_j M^{-1}_{SS} H_S = \textrm{e}^{T}_j (M^{-1}_{SS}|0) \, H =: \eta^T H.$ HSIC-target: $H_j = e_j^T H =: \eta^T H$.

Partial target:

Similarly to linear regression with Lasso-regularisation, the selection event can be characterised using the Karush-Kuhn-Tucker (KKT) conditions. We get

$$
\frac{1}{\lambda} \begin{pmatrix} -M_{SS}^{-1} & | & 0 \\ -M_{S^cS}M_{SS}^{-1} & | & \mathrm{Id} \end{pmatrix} H \le \begin{pmatrix} -M_{SS}^{-1}1 \\ 1 - M_{S^cS}M_{SS}^{-1}1 \end{pmatrix}.
$$

The truncation points \mathcal{V}^- and \mathcal{V}^+ are given by the Polyhedral Lemma.

HSIC-target:

We define $\hat{\beta}_{-i}$ as $\hat{\beta}$ with 0 at the j-th position and can directly derive the truncation points \mathcal{V}^- and \mathcal{V}^+ :

$$
\mathcal{V}^- = \lambda + (M\hat{\beta}_{-j})_j, \qquad \mathcal{V}^+ = \infty.
$$

For all $j \in S$, we conduct the tests

$$
H_0: \hat{\beta}_j^{\text{par}} = 0
$$
 vs. $H_1: \hat{\beta}_j^{\text{par}} > 0$ and
\n $H_0: H_j = 0$ vs. $H_1: H_j > 0$.

The p-value is given by $p = 1 - F_{0,nT\sum n}^{[\mathcal{V}^-, \mathcal{V}^+]}$ $\int_{0,\eta^T\Sigma\eta}^{\eta^T\nu^+]}(\eta^TH),$ where η is set according to the target.

Practical Application

Challenges

- \blacktriangleright Positive definiteness of M : positive definite approximation
- ▶ Computational costs of HSIC-estimation: screen for relevant features entering HSIC-Lasso
- \triangleright Choice of hyper-parameter: set data aside to estimate λ via cross-validation or AIC

Practical Application

Challenges

- \blacktriangleright Positive definiteness of M : positive definite approximation
- ▶ Computational costs of HSIC-estimation: screen for relevant features entering HSIC-Lasso
- \triangleright Choice of hyper-parameter: set data aside to estimate λ via cross-validation or AIC

Outline of algorithm

- \triangleright Split data into two folds
- \blacktriangleright 1st fold:
	- \triangleright Screening of relevant features
	- **Figure** Estimation of λ
- \blacktriangleright 2nd fold:
	- \blacktriangleright Computing H and M
	- ► HSIC-Lasso estimate $\hat{\beta}$ and obtaining selected indices S
	- \triangleright Post-selection inference for targets

Toy Mod<u>els</u>

Type-I error:

(M1)
$$
Y \sim \text{Ber}\Big(g\big(\sum_{i=1}^{10} X_i\big)\Big), \quad X \sim \mathcal{N}(0_{50}, \Xi),
$$

$$
g(x) = e^x/(1 + e^x),
$$

$$
Y = \sum_{i=1}^{5} X_i X_{i+5} + \varepsilon, \quad X \sim \mathcal{N}(0_{50}, \Xi),
$$

$$
\varepsilon \sim \mathcal{N}(0, \sigma^2),
$$

where Ξ is either set to Id or $\Xi_{ij}=0.5^{|i-j|}$, and σ^2 is chosen to be a fifth of the variance in the X -terms.

Power: We replace X_1 by θX_1 in model (M1) and denote it (M1') and introduce

(M3)
$$
Y = \theta X_1 + \sum_{i=2}^{10} X_i + \varepsilon, \quad X \sim \mathcal{N}(0_{50}, \text{Id}),
$$

$$
\varepsilon \sim \mathcal{N}(0, \sigma^2),
$$

(M4)
$$
Y = \theta h(X_1) + \sum_{i=2}^{10} X_i + \varepsilon, \quad X \sim \mathcal{N}(0_{50}, \text{Id}),
$$

\n $h(x) = x - x^3, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2).$

Type-I Error and Power

Performance on Real-World Data

- \triangleright RNAseq data from the Broad Institute's Single Cell Portal
- Response: type of blood cell $(10$ -level categorical), Features: 26 593 genes, Sample size: 1 078
- \blacktriangleright Half of the data used for screening 1,000 features and choice of λ with cross-validation; Incomplete U-statistics estimator of size 20 and partial target
- \blacktriangleright HSIC-Lasso selects 13 features: 9 of them are significant
- \blacktriangleright Found potentially new molecular signatures; Confidence statement on selected features

- \triangleright Wider investigation of method, e.g. split ratio, size of estimators, estimation of λ , behaviour for correlated features
- \triangleright Development of lntegration into a Python-package
- \triangleright Application to more datasets (analysis of Turkish Student and Communities & Crimes data in the paper and supplement)
- Integration of screening and hyper-parameter estimation in PSI-procedure
- Improvement through novel ideas in PSI

Paper: [Proceedings of ICML 2021](http://proceedings.mlr.press/v139/freidling21a.html) and on [arXiv \(2010.15659\)](https://arxiv.org/abs/2010.15659)

Code: Github [tobias-freidling/hsic-lasso-psi](https://github.com/tobias-freidling/hsic-lasso-psi)

Slides: Website [tobias-freidling.onrender.com](https://tobias-freidling.onrender.com/talk/)

- Gretton, Arthur, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf (2005). "Measuring statistical dependence with Hilbert-Schmidt norms.". In: Algorithmic learning theory. 16th international conference, ALT 2005. Berlin: Springer.
- Lee, Jason D., Dennis L. Sun, Yuekai Sun, and Jonathan E. Taylor (2016). "Exact post-selection inference, with application to the Lasso.". In: The Annals of **Statistics**
- Lim, Jen Ning, Makoto Yamada, Wittawat Jitkrittum, Yoshikazu Terada, Shigeyuki Matsui, and Hidetoshi Shimodaira (2020). "More Powerful Selective Kernel Tests for Feature Selection". In: Proceedings of Machine Learning Research.
- Song, Le, Alex Smola, Arthur Gretton, Justin Bedo, and Karsten Borgwardt (2012). "Feature selection via dependence maximization.". In: Journal of Machine Learning Research (JMLR).
- Yamada, Makoto, Wittawat Jitkrittum, Leonid Sigal, Eric P. Xing, and Masashi Sugiyama (2014). "High-dimensional feature selection by feature-wise kernelized Lasso.". In: Neural Computation.
- Zhang, Qinyi, Sarah Filippi, Arthur Gretton, and Dino Sejdinovic (2018). "Large-scale kernel methods for independence testing.". In: Statistics and Computing.