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Post-selection Inference - Toy Example

Linear regression model with 50 features and sample size 300.

50
Yi=Y Xyfj+en e S N(0,1)
j=1
Task: Select the 5 most influential features and construct 90% -
confidence intervals for them.

Data generation: Draw standardnormal random numbers for X and ¢,
and set 3; =0 for all j € {1,...,50}.
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flawed when the information encapsulated in the selection is not
accounted for.
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Problem: Hypothesis tests and confidence interval can be seriously
flawed when the information encapsulated in the selection is not
accounted for.

Inference conditional on selection information.

In the example: S = {16,30,32,35,41},5° = {1,...,50} \ S
P(ﬁw € C"|316\ > |BJ| Vi€ SC> > (0.9.

More generally, we are interested in the distribution of 7 Y|[{AY < b}
forne R", A € RT”*™" b e RY.



Post-selection Inference with Polyhedral Lemma

Let F/Ea[;bQ] denote the cdf of a N (i1, 02) truncated to the interval [a, b],
that is’

[a,b] _ o
Fu,02 (z) = (I)(b—

where @ is the cdf of N'(0,1).



Post-selection Inference with Polyhedral Lemma

Let Fiafg] denote the cdf of a N (i1, 02) truncated to the interval [a, b],
that is’

Fletl ) = z
l/«,02< ) q)(b?Tu) _ @(ao’u)

where @ is the cdf of N'(0,1).

Theorem (Polyhedral Lemma, Lee et al. 2016)

LetY ~ N (u,X), then

V= (2),Vt
FY OV 0Ty )Y < b} ~ U (0,1),

where z = (Id — (nTEn)_lE'm]T)Y and V=~ and V' are known.

Note: If X is a random variable and F'is its cdf, then F'(X) ~ U (0,1).



Hilbert-Schmidt Independence Criterion (HSIC)

Idea: Embed probability measures Pxy and PxPy in Reproducing
Kernel Hilbert Space (RKHS) and compare them through the
MMD-distance in RKHS

Definition (HSIC, Gretton et al. 2005)

Let X and Y be random variables and &(-,-) and [(-,-) kernel
functions. The Hilbert-Schmidt independence criterion is given by

HSIC(X, Y) = Eaz,x’,y,y/ [k($, {L’l)l(y, y,)] + E;r,a:’ []{(Il?, 113‘,)] Ey,y’ [l(ya y/)]
— 2By [Ex[k(z, 2, [U(y, v)]],

where E,, ., .+ denotes the expectation over independent pairs (z,y)
and (2/,y).
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where E,, ., .+ denotes the expectation over independent pairs (z,y)
and (2/,y).

Properties:
» No assumptions on X, Y and their relationship.
» HSIC(X,Y) >0, HSIC(X,Y)=0<« X 1LY.
» Classification and regression settings with suitable kernels possible.



HSIC estimators |

Suppose that we are given an i.i.d. sample {y;, z;}!" ; and define K
a~nd L by Kij = kj(l‘lj xj) and Lij = l(yi,yj) fori,j € {1, . ,n}.
K =K —diag(K), L =L —diag(L) and ' =1d — %HT.
Biased estimator (Gretton et al. 2005):

HSICy(X,Y) = (n — 1) 2tr(KTLT)

Unbiased estimator (Song et al. 2012):

— 1 - 1TK11711 2 .
HSIC, =— — T
SIC,(X,Y) Py (tr(KL)—i— CENCET) n721 KL1>
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Suppose that we are given an i.i.d. sample {y;, z;}!" ; and define K
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K =K —diag(K), L =L —diag(L) and ' =1d — %HT.
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— 1 - 1TK11711 2 .
HSIC, =— — T
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If X and Y are independent, for both estimators nH/Sﬁ(X, Y') does
not converge to a Gaussian random variable. &



HSIC estimators |l

Block estimator (Zhang et al. 2018):
Divide sample into blocks of size B, {{y?, 2?}2 ZLL?.

n/B
— 1 —
HSIChioa(X,Y) = /B § "HSIC, (X, Y?)
b=1
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Block estimator (Zhang et al. 2018):
Divide sample into blocks of size B, {{y?, 2?}2 ZLL?.

n/B
— 1 —
HSICh10ek (X, Y) = /B » HSIC, (X", Y?)
b=1

Incomplete U-statistics estimator (Lim et al. 2020):

H/S&is a U-statistic of degree 4, i.e. there exists h such that
HSIC,(X,Y) = (Z)_l Z(i,j,q,r)esn , i, 4,q,7), where S, 4 is the set
of all 4-subsets of {1,...,n}. Let DC Sp.a and |D| = m = O(n), then

H/Sﬁ‘mc(X,Y) == m_l Z h(la]a q, 7").
(4,9,9,m)€D

Both \/n/B HSICoc (X, Y) and /m HSICin(X,Y) are
asymptotically normal.



HSIC-Lasso

Goal: Use HSIC to select non-redundant features.

Let L=TLT and KU) =TKUI,j e {1,...,p}. The HSIC-Lasso
(Yamada et al. 2014) solution is given by

B—argmlanL ZBJK(k)||Frob+>‘||6H1
J=1

_argmmfZﬂ]HSICb(X(] Z 3;B;HSIC, (X, X @) + || 8|1

B=20 Jj=1 7.]1

» 15t term selects influential covariates
» 2" term punishes selection of dependent variables

» 3" term enforces sparsity



Post-selection Inference with HSIC-Lasso

Goal: Create PSl-procedure for HSIC-Lasso

» Version of Polyhedral Lemma for asymptotically normal random
variables

» Asymptotically normal HSIC-Lasso
» Expression for inference targets

» Characterisation of selection in affine linear way



Normal HSIC-Lasso and Inference Targets

We replace the biased estimator with the block or the incomplete
U-statistics estimator, for example

p p
] — . 1 — .
3 = argmin — Y BHSIChi0a (XY, V) + 3 > BBHSIC(X D, X D) + X8y

B=0 = =

1
=: argmin — T H + =T MB + \||B]|1,
>0 2

where H; = H/Sﬁblock(X(j),Y) and M;; = H/SE(X(i),X(j)). We
define the selection procedure as S = {j: Bj > 0}, denote its value by

S and set S¢ ={1,...,p}\ S. Moreover, we assume that M is positive
definite.



Normal HSIC-Lasso and Inference Targets

We replace the biased estimator with the block or the incomplete
U-statistics estimator, for example

1 & (i
B= argmm—ZﬁJHSICbIOCk(X(” Y)+ 5 > BBHSIC(X D, X D) + X8y

B>0 = ig=1

=: argmin —37 H + 6TMB+ A8,
£>0
where H; = H/Sﬁblock(X(j),Y) and M;; = H/SE(X(i),X(j)). We
define the selection procedure as S = {j: Bj > 0}, denote its value by

S and set S¢ ={1,...,p}\ S. Moreover, we assume that M is positive
definite.

Partial target: In analogy with linear regression, we look at “partial
regression coefficients” Bpar = eTMSé;}HS =e] ( Mgi|0)H =T H.

HSIC-target: H; = e;‘-FH =:nTH.



Affine Linear Selection

Partial target:

Similarly to linear regression with Lasso-regularisation, the selection
event can be characterised using the Karush-Kuhn-Tucker (KKT)
conditions. We get

-1 —1
L =Mgs 10y o “Mgsl )
A _MSCSMSTS | Id - 1—M5c5M551
The truncation points V=~ and VT are given by the Polyhedral Lemma.

HSIC-target:
We define 3_; as 8 with 0 at the j-th position and can directly derive
the truncation points V= and V7

12 :)\+(Mﬁfj)j, VT = .



For all j € S, we conduct the tests

Ho: 8P =0 vs. Hy: B >0 and
H():Hj:O VS. H1:Hj>0.

The p-value is given by p =1 — F[v_’vﬂ(nTH), where 7 is set

_ 0,77 %0
according to the target.



Practical Application

Challenges
> Positive definiteness of M: positive definite approximation
» Computational costs of HSIC-estimation: screen for relevant
features entering HSIC-Lasso
» Choice of hyper-parameter: set data aside to estimate A via
cross-validation or AIC



Practical Application

Challenges
> Positive definiteness of M: positive definite approximation
» Computational costs of HSIC-estimation: screen for relevant
features entering HSIC-Lasso
» Choice of hyper-parameter: set data aside to estimate A via
cross-validation or AIC

Outline of algorithm
» Split data into two folds

» 15t fold:
» Screening of relevant features
» Estimation of A
» 2" fold:
» Computing H and M
» HSIC-Lasso estimate /3 and obtaining selected indices S
» Post-selection inference for targets



Toy Models

Type-| error:
(M1) Y ~ Ber(g(zil& Xi)), X ~ N (050, Z),
g(x) =¢e"/(1+¢"),
Mz ¥ =D XiXis e X~ N(050,5),

e~ N(0,0%),

where = is either set to Id or Z;; = 0.5/, and ¢ is chosen to be a
fifth of the variance in the X-terms.

Power: We replace X by X7 in model (M1) and denote it (M1') and

introduce
(M3) Y =0X1+ 2120, Xi+e, X ~N(05,1d),
e~ N(0,0?%),
(Ma) Y =0h(X1)+ 310, Xi+e, X ~N(050,1d),

h(z) =z —a%, &~ N(0,0%).



Type-l Error and Power
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Performance on Real-World Data

» RNAseq data from the Broad

Institute’s Single Cell Portal Gene p-value
» Response: type of blood cell (10-level ACTB 0.961
categorical), Features: 26 593 genes, I6J 0-001
P CD14 0.026

Sample size: 1078
] LYz 0.001
» Half of the data used for screening FCERIA 0.001
1000 fea.ture.‘s and choice of A with MTRNR2L2 0.420
cross-validation; Incomplete FCGR3A 0.001
U-statistics estimator of size 20 and RPS3A 0.001
partial target FTL 0.968
» HSIC-Lasso selects 13 features; 9 of TMSB4X 0.012
them are significant HLA-DPAL1 0.001
» Found potentially new molecular TVAS5 0.553
signatures; Confidence statement on IFI30 At

selected features



Potential Future Work

» Wider investigation of method, e.g. split ratio, size of estimators,
estimation of \, behaviour for correlated features

» Development of/ Integration into a Python-package

» Application to more datasets (analysis of Turkish Student and
Communities & Crimes data in the paper and supplement)

> Integration of screening and hyper-parameter estimation in
PSl-procedure

» Improvement through novel ideas in PSI



Thank you for your attention!

Paper: Proceedings of ICML 2021 and on arXiv (2010.15659)
Code: Github tobias-freidling/hsic-lasso-psi

Slides: Website tobias-freidling.onrender.com


http://proceedings.mlr.press/v139/freidling21a.html
https://arxiv.org/abs/2010.15659
https://github.com/tobias-freidling/hsic-lasso-psi
https://tobias-freidling.onrender.com/talk/
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