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Sensitivity Analysis as Optimisation Problem

Model

Model for observed and unobserved variables, O and U : (O,U) ∼ Pθ,ψ
θ parametrises the observable and ψ the unobservable aspects of Pθ,ψ.
Quantity of interest: gn(θ̂, ψ), e.g. a point estimate or confidence interval for
a causal effect.

Sensitivity Analysis

Causal assumptions like ’no unmeasured confounding’ correspond to fixing

the value of ψ.

Sensitivity analysis considers a set of plausible values Ψ instead.
The range of values of gn is the solution of

max / min gn(θ̂, ψ) subject to ψ ∈ Ψ.

Challenges

Identification of gn(θ̂, ψ) in terms of the sensitivity parameters ψ
Translating domain knowledge into the constraints ψ ∈ Ψ

Using interpretable R2-values helps practitioners to express their beliefs about

the unmeasured confounder. The rules of the R2-calculus translate these into Ψ.

R2-Calculus

The R2-calculus assembles algebraic rules forR2-values and correlations as a co-

herent system of their own.

Definitions Let Y ∈ Rn, X ∈ Rn×p andW ∈ Rn×q be n i.i.d. samples.

R2-value and partial R2-value:

R2
Y∼X := 1 − var(Y −Xβ̂X)

var(Y )
, R2

Y∼X|W :=
R2
Y∼X+W −R2

Y∼W
1 −R2

Y∼W
.

R-value: RY∼X := corr(Y,X) forX ∈ Rn.

f-value: fY∼X := RY∼X/
√

1 −R2
Y∼X .

Some Calculation Rules

Decomposition of unexplained variance:

1 −R2
Y∼X+W = (1 −R2

Y∼X|W )(1 −R2
Y∼W )

Recursive partial correlation formula:

RY∼X|W = RY∼X −RY∼WRX∼W√
1 −R2

Y∼W

√
1 −R2

X∼W

, forX,W ∈ Rn

Bias of the k-class estimator

D

U

YZ

X

β

Linearmodel with continuous outcome Y ∈ Rn,

observed variables D ∈ Rn, Z ∈ Rn, X ∈ Rn×p

and unmeasured confounder U ∈ Rn:

Y := ν +Dβ + Zδ +Xξ + Uλ + ε.

Weestimate β, the causal effect ofD on Y , with
the k-class estimator

β̂k = cov(D⊥X, Y ⊥X) − k cov(D⊥Z,X, Y ⊥Z,X)
var(D⊥X) − k var(D⊥Z,X)

.

It interpolates between the OLS-estimator

(k → −∞) and the IV-estimator (k = 1) with instrumental variable Z .
Via the R2-calculus and a technical result in [1], we get:

β̂k − β̂OR =
[
fY∼Z|X,DRD∼Z|X

1 − k + k R2
D∼Z|X

+RY∼U |X,Z,D fD∼U |X,Z

]
sd(Y ⊥X,Z,D)
sd(D⊥X,Z)

.

Similarly, we can identify the ends of a 1 − α confidence interval. This extends
previous work on the OLS-estimator [2].

We choose the sensitivity parameters ψ = (RD∼U |X,Z, RY∼U |X,Z,D).
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Specifying Bounds Ψ

Assume that X = (X̃, Ẋ) can be separated such that Ẋ⊥⊥U |X̃ holds.
Linear Regression

Choose constraints from the U → D and U → Y block of the table below.

Range bounds: direct specification of ψ, e.g. RD∼U |X,Z ∈ [−0.3, 0.2].
Comparative bounds: benchmarking against observed covariates, e.g.

R2
D∼U |X̃,Ẋ−j,Z

≤ 0.5R2
D∼Ẋj|X̃,Ẋ−j,Z

means that U can explain at most half as

much variability in D than Ẋj can after partialling out (X̃, Ẋ−j, Z).

Comparative bounds are translated into constraints on ψ with the R2-calculus.

Instrumental Variable

Choose any constraints from the table.

R-values that parametrise the direct effect of Z on Y and the correlation
between Z and U are connected to ψ via

fY∼Z|X,U,D

√
1 −R2

Y∼U |X,D,Z = fY∼Z|X,D

√
1 −R2

Z∼U |X,D −RY∼U |X,D,Z RZ∼U |X,D,

fZ∼U |X,D

√
1 −R2

D∼U |X,Z = fZ∼U |X

√
1 −R2

D∼Z|X −RD∼Z|X RD∼U |X.Z.

Add these equations as constraints to the optimisation problem.

U → D 1. RD∼U |X,Z ∈ [BD
l , B

D
u ]

2. R2
D∼U |X̃,ẊI ,Z

≤ ηDR
2
D∼ẊJ |X̃,ẊI ,Z

U → Y 1. RY∼U |X,Z,D ∈ [BY
l , B

Y
u ]

2. R2
Y∼U |X̃,ẊI ,Z

≤ ηY R
2
Y∼ẊJ |X̃,ẊI ,Z

3. R2
Y∼U |X̃,ẊI ,Z,D

≤ ηY R
2
Y∼ẊJ |X̃,ẊI ,Z,D

U ↔ Z 1. RZ∼U |X ∈ [BZ
l , B

Z
u ]

2. R2
Z∼U |X̃,Ẋ−j

≤ ηZ R
2
Z∼Ẋj|X̃,Ẋ−j

Z → Y 1. RY∼Z|X,U,D ∈ [BYZ
l , BYZ

u ]
2. R2

Y∼Z|X,U,D ≤ ηYZ R
2
Y∼Ẋj|X̃,Ẋ−j,U,D

Table Specify interpretable

bounds and use the R2-calculus

to translate them into the con-

straints Ψ of the optimisation

problem.

Insights

Data example: Inference on the causal effect of education on earnings, cf. [3].

Linear Regression

Lower end of the 95% confidence interval for different values of the sensitivity

parameters with comparison points:
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Instrumental Variable

We use college proximity as instrument for education and set the bounds

RD∼U |X,Z ∈ [−0.9, 0.9], R2
Y∼U |X−j,Z,D

≤ 5R2
Y∼Xj|X−j,Z,D

,

where Xj is an indicator for being black. For different IV-related bounds, we get

RZ~U|X , RY~Z|X,U,D ∈  [-0.015 , 0.015] RZ~U|X , RY~Z|X,U,D ∈  [-0.025 , 0.025]
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