Sensitivity Analysis with the R 2 -Calculus

Tobias Freidling Qingyuan Zhao

Statistical Laboratory, University of Cambridge

Sensitivity Analysis as Optimisation Problem

Model

- Causal assumptions like 'no unmeasured confounding' correspond to fixing the value of *ψ*.
- Sensitivity analysis considers a set of plausible values Ψ instead.
- The range of values of g_n is the solution of

 $\max / \min g_n(\hat{\theta})$ *subject to* $\psi \in \Psi$ *.*

Challenges

ldentification of $g_n(\hat{\theta},\psi)$ in terms of the sensitivity parameters ψ

- Model for observed and unobserved variables, *O* and *U*: (*O, U*) ∼ P*θ,ψ*
- *θ* parametrises the observable and ψ the unobservable aspects of $\mathbb{P}_{\theta,\psi}$.
- Quantity of interest: $g_n(\hat{\theta},\psi)$, e.g. a point estimate or confidence interval for a causal effect.

Sensitivity Analysis

The R^2 -calculus assembles algebraic rules for R^2 -values and correlations as a coherent system of their own.

Definitions Let $Y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$ and $W \in \mathbb{R}^{n \times q}$ be *n* i.i.d. samples.

 R^2 -value and partial R^2 -value:

Translating domain knowledge into the constraints *ψ* ∈ Ψ

Using interpretable R^2 -values helps practitioners to express their beliefs about the unmeasured confounder. The rules of the R^2 -calculus translate these into Ψ .

R 2 -Calculus

 $\hat{\beta}_k =$ $cov(D^{\perp X}, Y^{\perp X}) - k cov(D^{\perp Z,X}, Y^{\perp Z,X})$ $var(D^{\perp X}) - k \varphi(D^{\perp Z,X})$ *.*

It interpolates between the OLS-estimator $(k \rightarrow -\infty)$ and the IV-estimator ($k = 1$) with instrumental variable Z. Via the R^2 -calculus and a technical result in [\[1\]](#page-0-0), we get:

Similarly, we can identify the ends of a $1 - \alpha$ confidence interval. This extends $|$ previous work on the OLS-estimator [\[2\]](#page-0-1).

We choose the sensitivity parameters $\psi = (R_{D \sim U|X,Z}, R_{Y \sim U|X,Z,D})$.

$$
R_{Y \sim X}^2 := 1 - \frac{\text{var}(Y - X\hat{\beta}_X)}{\text{var}(Y)}, \quad R_{Y \sim X|W}^2 := \frac{R_{Y \sim X + W}^2 - R_{Y \sim W}^2}{1 - R_{Y \sim W}^2}.
$$

R-value: $R_{Y\sim X} := \text{corr}(Y, X)$ for $X \in \mathbb{R}^n$.

• *f*-value:
$$
f_{Y\sim X} := R_{Y\sim X}/\sqrt{1 - R_{Y\sim X}^2}
$$
.

Some Calculation Rules

• Decomposition of unexplained variance:

$$
1-R_{Y\sim X+W}^2=(1-R_{Y\sim X|W}^2)(1-R_{Y\sim W}^2)
$$

Recursive partial correlation formula:

$$
R_{Y \sim X|W} = \frac{R_{Y \sim X} - R_{Y \sim W} R_{X \sim W}}{\sqrt{1 - R_{Y \sim W}^2} \sqrt{1 - R_{X \sim W}^2}}, \quad \text{for } X, W \in \mathbb{R}^n
$$

Assume that $X = (\tilde{X}, \dot{X})$ can be separated such that $\dot{X} \bot\!\!\bot U | \tilde{X}$ holds. Linear Regression

- Choose constraints from the $U \rightarrow D$ and $U \rightarrow Y$ block of the table below.
- Range bounds: direct specification of ψ , e.g. $R_{D\sim U|X,Z} \in [-0.3, 0.2]$.
- Comparative bounds: benchmarking against observed covariates, e.g. R_I^2 *D*∼*U*|*X,* ˜ *X*˙ [−]*^j ,Z* $\leq 0.5 R_{I}^{2}$ $_{D \sim \dot{X}_j|\tilde{X}, \dot{X}_{-j}, Z}$ means that U can explain at most half as much variability in D than \hat{X}_j can after partialling out $(\tilde{X}, \dot{X}_{-j}, Z)$.

Comparative bounds are translated into constraints on ψ with the R^2 -calculus.

Bias of the *k***-class estimator**

D

U

X

Z } → *(D* } → *(Y*

β

We estimate *β*, the causal effect of *D* on *Y* , with the *k*-class estimator

- **Choose any constraints from the table.**
- *R*-values that parametrise the direct effect of *Z* on *Y* and the correlation between *Z* and *U* are connected to *ψ* via

f^Y [∼]*Z*|*X,U,D* $\sqrt{1 - R_{Y \sim U|X,D,Z}^2} = f_{Y \sim Z|X,D}$ $\sqrt{1 - R_{Z \sim U|X,D}^2 - R_{Y \sim U|X,D,Z} R_{Z \sim U|X,D}}$

$$
\hat{\beta}_k - \hat{\beta}_{\textsf{OR}} = \left[\frac{f_{Y\sim Z|X,D}\,R_{D\sim Z|X}}{1-k+k\,R_{D\sim Z|X}^2} + R_{Y\sim U|X,Z,D}\,f_{D\sim U|X,Z}\right]\frac{\text{sd}(Y^{\perp X,Z,D})}{\text{sd}(D^{\perp X,Z})}.
$$

Table Specify interpretable bounds and use the R^2 -calculus to translate them into the constraints Ψ of the optimisation problem.

References

- [1] Carrie A. Hosman, Ben B. Hansen, and Paul W. Holland. The sensitivity of linear regression coefficients' confidence limits to the omission of a confounder. *The Annals of Applied Statistics*, 4(2):849 – 870, 2010.
- [2] Carlos Cinelli and Chad Hazlett. Making sense of sensitivity: extending omitted variable bias. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 82(1):39–67, 2020.
- [3] David Card. Using Geographic Variation in College Proximity to Estimate the Return to Schooling. Technical Report w4483, National Bureau of Economic Research, 1993.

Specifying Bounds Ψ

Instrumental Variable

- *fZ*∼*U*|*X,D* $\sqrt{1 - R_{D \sim U|X,Z}^2} = f_{Z \sim U|X}$ $\sqrt{1 - R_{D \sim Z|X}^2 - R_{D \sim Z|X} R_{D \sim U|X.Z}}$
- Add these equations as constraints to the optimisation problem.

Insights

Data example: Inference on the causal effect of education on earnings, cf. [\[3\]](#page-0-2). Linear Regression

Lower end of the 95% confidence interval for different values of the sensitivity parameters with comparison points:

Our benchmarking

Linear model with continuous outcome $Y \in \mathbb{R}^n$, \mathbf{S} observed variables $D \in \mathbb{R}^n$, $Z \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$ and unmeasured confounder $U \in \mathbb{R}^n$:

 $Y := \nu + D\beta + Z\delta + X\xi + U\lambda + \varepsilon.$

Cinelli and Hazlett's benchmarking

Instrumental Variable

We use college proximity as instrument for education and set the bounds

$$
R_{D \sim U|X,Z} \in [-0.9, 0.9], \quad R_{Y \sim U|X_{-j},Z,D}^2 \le 5 R_{Y \sim X_j|X_{-j},Z,D}^2,
$$

where X_j is an indicator for being black. For different IV-related bounds, we get

