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Sensitivity Analysis as Optimisation Problem

Model
" Model for observed and unobserved variables, O and U: (O,U) ~ Py

" 0 parametrises the observable and ¢ the unobservable aspects of Py .

= Quantity of interest: ¢,(6, 1), e.g. a point estimate or confidence interval for
a causal effect.

Sensitivity Analysis

" Causal assumptions like 'no unmeasured confounding’ correspond to fixing
the value of .

= Sensitivity analysis considers a set of plausible values W instead.
" The range of values of g, is the solution of

subject to ¢ € V.

max / min g,(6, 1)

Challenges
" |dentification of gn(é, ) in terms of the sensitivity parameters ¢

" Translating domain knowledge into the constraints ¢y € ¥

Using interpretable R*-values helps practitioners to express their beliefs about
the unmeasured confounder. The rules of the R*-calculus translate these into .

R2-Calculus

The R*-calculus assembles algebraic rules for R*-values and correlations as a co-
herent system of their own.

Definitions Let Y e R", X € R"? and W € R"*? be n i.i.d. samples.

= R?-value and partial R?-value:

var(Y — X fx)

n _ Ry x o — RYNW
var(Y) Yo X W

R? =1 —
T 1 — Ry

" R-value: Ry.x = corr(Y, X) for X € R™
" f-value: fy.x —RYNX/\/l RYNX

Some Calculation Rules
" Decomposition of unexplained variance:

1= R%/NXH/V = (1 - R%”wX]W)(l — RQYNW)
= Recursive partial correlation formula:

P RYNX — RYNWRXNW
Y~X|W — )

for X, W € R"

Bias of the L-class estimator

Linear model with continuous outcome Y € R",
observed variables D €¢ R", 7 ¢ R", X € R"*P
and unmeasured confounder U € R":

Y =uv 4 DB+ Z6+ XE+UNe.

We estimate 3, the causal effect of D on Y, with
the k-class estimator

B — cov(D* Y+ — kcov(DH44 Y44

" var(D+X) — kvar(D+44)

It interpolates between the OLS-estimator

(k — —o0o) and the IV-estimator (k = 1) with instrumental variable Z.
Via the R?-calculus and a technical result in [1], we get:

Bi — Por =

Sd(yLX,Z,D)

R ~U ~J ‘
+ Ity U|X,Z,D JD~U|X,Z Sd(DJ-X’Z)

1—k+kRDZM

Similarly, we can identify the ends of a 1 — o confidence interval. This extends
previous work on the OLS-estimator [2].

We choose the sensitivity parameters ¢ = (Rp._y|x.z, By ~uv|x.z.D)-
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Specifying Bounds V¥

Assume that X = (X, X) can be separated such that X 1L U|X holds.

Linear Regression

" Choose constraints from the U — D and U — Y block of the table below.
" Range bounds: direct specification of v, e.8. Rp.yx 7 € [—0.3,0.2].

= Comparative bounds: benchmarking against observed covariates, e.g.

2 2 i
Ry vxx,z <098, %% x_,z Means that U can explain at most half as

much variability in D than X can after partialling out (X, X_;, 7).
Comparative bounds are translated into constraints on ) with the R*-calculus.

Instrumental Variable
" Choose any constraints from the table.

= R-values that parametrise the direct effect of Z on Y and the correlation
between Z and U are connected to ¢ via

Jy~zx. UD\/1 y ~U|X,D.Z = fy~z|x, D\/1 Z ~U|X,D — Ry u1x.p.7z Rz~U|x.D;

Jz~u|x, D\/1 DNU,X 7 = ZNU\X\/l R, ~z1x — o~zix Bpavix.z:

= Add these equations as constraints to the optimisation problem.

U— D]l RDNU]X,Z < [Bl ,B??]
2 y
2. By oz s,z S0 x % x,2
U—-Y|1. RY~U|X,ZD c [BZY,BY]
2. R;\JU’X sz S < ny RYNXJ’X %7 Table Specify interpretable
3 R < ny R bounds and use the R*-calculus
Y~UIX. X ZD — VX)X X1 ZD | tg translate them into the con-
U<« Z|1. Ryuyx € B, BY] straints ¥ of the optimisation
2 problem.
2. Ry vixx =0z Ry x XX
7 =Y |1. RYNZ]XUD - [BYZ BYZ]
2
2. Ry gixup <mvz Ry i XX UD

Insights

Data example: Inference on the causal effect of education on earnings, cf. [3].

_inear Regression
L.ower end of the 95% confidence interval for different values of the sensitivity
parameters with comparison points:

Our benchmarking

Cinelli and Hazlett's benchmarking
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Instrumental Variable
We use college proximity as instrument for education and set the bounds

RDNU|X,Z S [_097 09]7 R%/NU‘X_J',Z,D S 5R%/NX]"X_]',Z,D7
where X is an indicator for being black. For different IV-related bounds, we get

Rz-uix » Ry~zixup € [-0.015, 0.015] Rz-uix » Ry~zix.up € [-0.025 , 0.025]
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