Selective Randomization Inference for Adaptive Studies Tobias Freidling, Zijun Gao, Qingyuan Zhao

University of Chicago 27/10/2023

Overview

- 1. Background
 - 1. Post-selection Inference
 - 2. Adaptive Clinical Trials

3. Randomization Inference

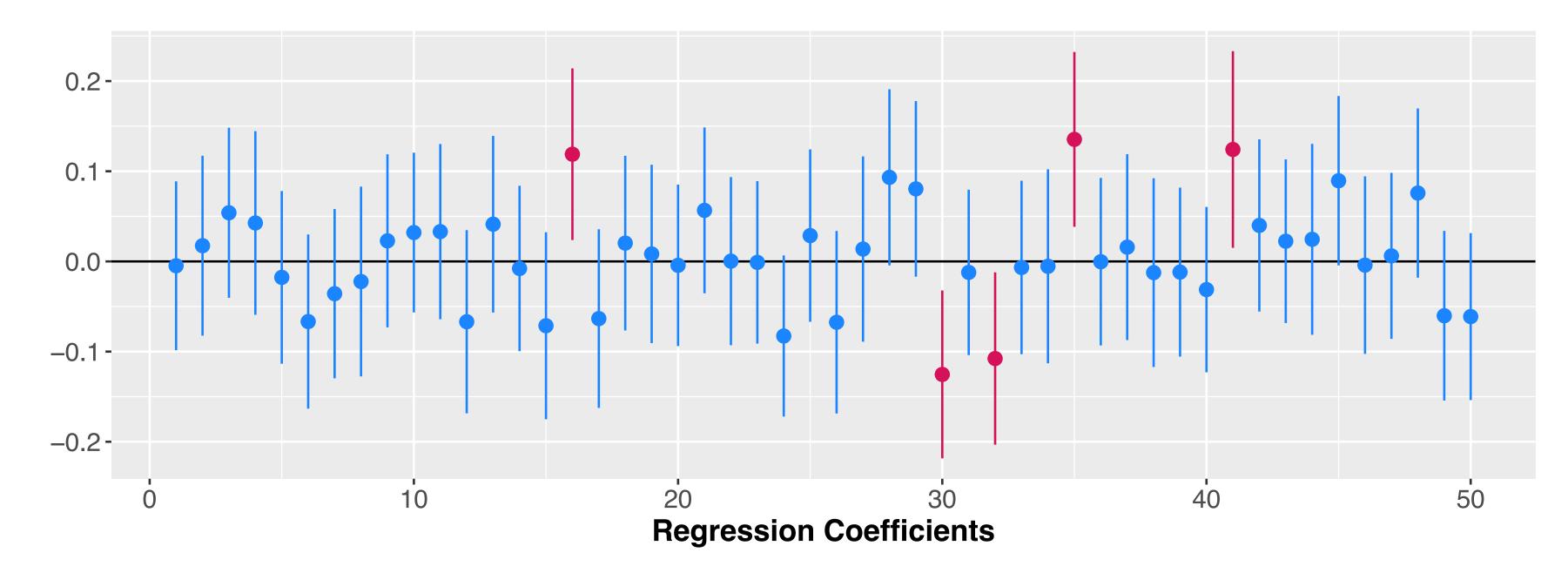
- 2. Adaptive Studies A Graphical Model
- 3. Selective Randomization Inference
- 4. Confidence Intervals and Computation
- 5. Questions

Post-selection Inference - Toy Example Linear regression with 50 covariates and n = 300: $Y_i = \sum_{i=1}^{300} X_{ij} \beta_j + \varepsilon_i$, $\varepsilon_i \sim N(0,1)$

Task: Find the 5 most influential features and construct 90%-confidence intervals for their regression coefficients.

i=1

Ground truth: $\beta_i = 0$ for all $j \in \{1, \dots, 50\}$



Post-selection Inference

- Traditional statistics: model & null hypothesis \rightarrow data \rightarrow inference
- Yet, in practice: data \rightarrow model & null hypothesis \rightarrow inference
- Solutions:
 - Data splitting (Cox, 1975): potential loss of power, arbitrary splits
 - Selective inference (Lee et al., 2016; Fithian et al., 2017):
 - null hypothesis and model are chosen based on data D via selection rule S(D)
 - Condition on selection event: $D \mid S(D) = s$ selective distribution
 - Selective p-value: $\mathbb{P}(T_s(D) \le t_{s,obs} \mid S(D) = s)$

Adaptive Clinical Trials

- Multiple stages
- Adaptive designs: response adaptive randomisation (RAR), multi-arm multi-stage
- Analysis of adaptive studies:
 - Well-known problem, e.g. Armitage (1960), Pocock (1977) etc. lacksquare
 - Specific to a certain parametric model or aggregation of p-values
 - Unaware of post-selection inference literature
- Remark: connection to bandit literature

Objectives: determine safe dosage, most effective treatment, responsive subpopulation

(MAMS), enrichment trials etc. \rightarrow selective recruitment and treatment assignment

Randomization Inference - Example

- Study with *n* participants testing 2 treatments
- Treatment assignment: $W \in \{0,1\}^n$; $\mathbb{P}(W = w)$ chosen by experimenter
- Potential outcomes of participants: $Y(\cdot) = (Y_i(0), Y_i(1))_{i=1}^n$
- Observed outcomes: Y = Y(W)
- Sharp null hypothesis: $Y_i(0) = Y_i(1)$ $\forall i \in [n] \rightarrow \text{all potential outcomes } Y(\cdot)$ are known • Randomization distribution of test statistic T: $T(W, Y(\cdot)) \mid Y(\cdot)$
- Randomization p-value:

consistency

 $p = \mathbb{P}^*(T(W^*, Y(\cdot)) \le T(W, Y(\cdot)) \mid W, Y(\cdot)), \quad W^* \stackrel{D}{=} W \text{ and } W^* \perp W \mid Y(\cdot)$

Randomization Inference

- Revival (Zhang & Zhao, 2023) of an old idea (Fisher, 1935)
- Leveraging known treatment assignment probability
- Extensions: conditional randomization test, partially sharp null hypotheses
- Pros: no modelling assumptions, arbitrary dependence between units
- Cons: uninteresting null hypothesis, computation of p-value

Adaptive Trials - Set-up

- Two-stage adaptive trial
- Potential outcomes $Y(\cdot) = Y_{[n]}(\cdot)$ ar
- Recruitment for stages I and II: $R_1 \subseteq I$
- Observed outcomes: Y_{R_1} and Y_{R_2}
- Treatment assignments for stages I and $W_1 \in \{0, \dots, L\}^{|R_1|}, \quad W_2 \in \{0, \dots, L\}^{|R_1|}$
- Summary statistics after stage I and II:
- Assumptions: Consistency, No interference

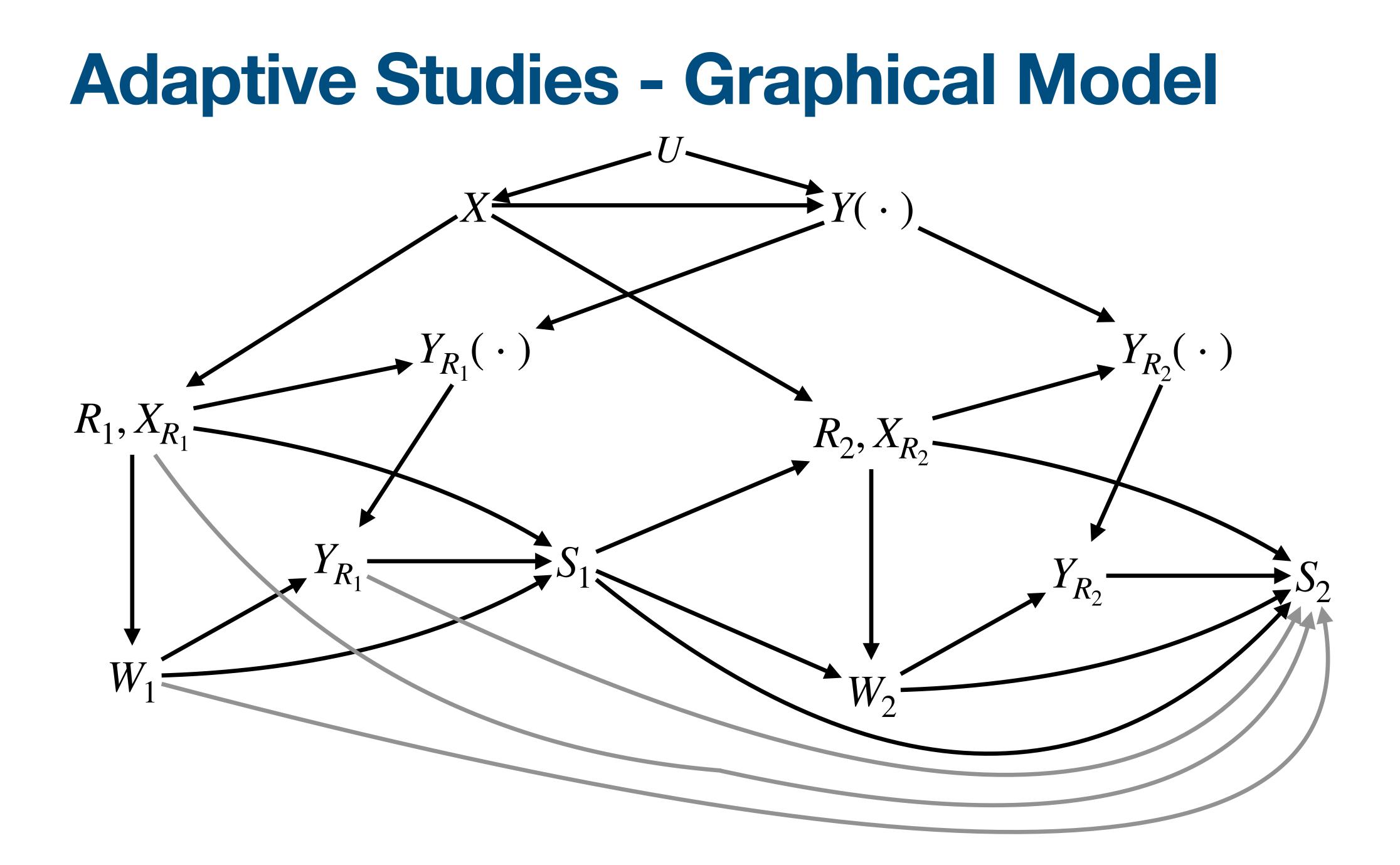
nd covariates
$$X = X_{[n]}$$

[n], $R_2 \subseteq [n] \setminus R_1$, $R = R_1 \cup R_2$

d II:
$$|R_2|, \quad W = (W_1, W_2)$$

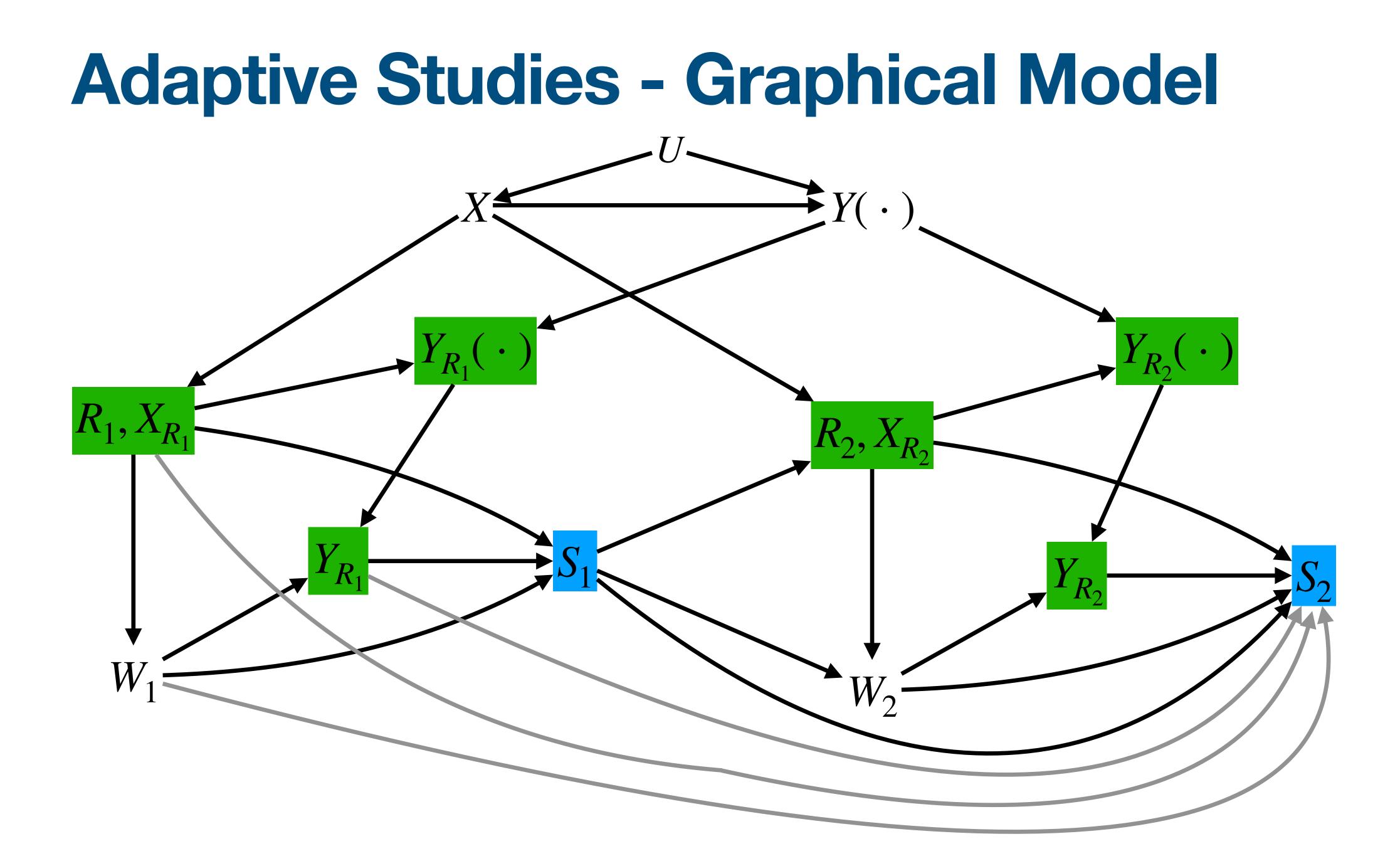
 $S = (S_1, S_2)$

S_2 models H_0



Selective Randomization Inference

• Selective randomization distribution: $W_1, W_2 \mid R, X_R, Y_R(\cdot), S$



Selective Randomization Inference

- Selective randomization distribution: W_1 ,
- Selective randomization p-value:
 - Test statistic: $T(W) := T(W, X_R, R, Y_R)$
 - $W^* \stackrel{D}{=} W$ and $W^* \perp W \mid R, X_R, Y_R(\cdot)$
 - $p = \mathbb{P}^*(T(W^*) \le T(W) \mid W, R, X_R, Z_R)$
- Lemma: *p* controls the selective type-I error.
- Remark: Factorization without gray arrow $p(w \mid r, x_r, y_r(\cdot), s, h) = p(w_1 \mid r_1, x_{r_1}, x_{r_1})$

$$, W_2 \mid R, X_R, Y_R(\cdot), S(W)$$

$$R(\cdot))$$

$$Y_R(\cdot), S(W^*) = S(W))$$

rror. Simon & Simon (2011): special case

h)

ws
$$y_{r_1}(\cdot), s) \cdot p(w_2 \mid r_2, x_{r_2}, y_{r_2}(\cdot), s,$$

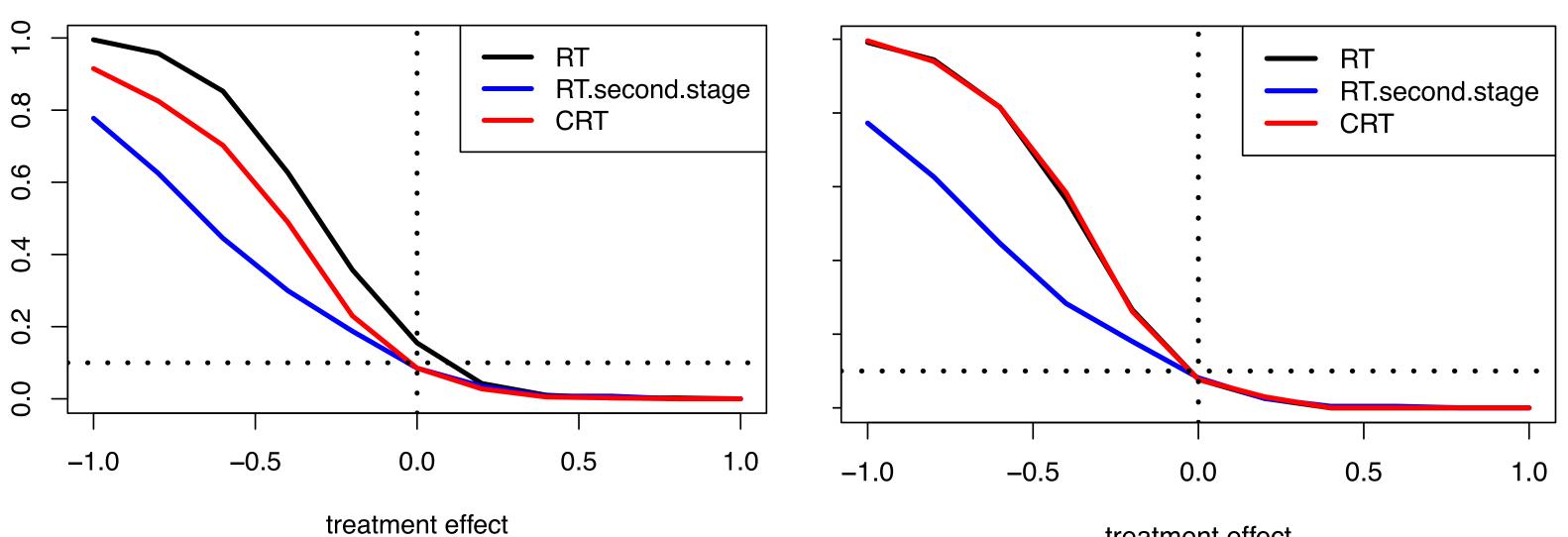
Simulation Study

- 2 stages, 2 treatments, 2 groups G_1, G_2
- Potential outcomes: $Y_i(0) = Y_i(1) \sim N(0,1)$ i.i.d.
- First stage: 20 patients per group, $\Delta = \left[\widehat{ATE}(G_1) \widehat{ATE}(G_2)\right] / \sqrt{2}$
- $\text{ Selection variable: } S = \begin{cases} \text{recruit 20 from } G_2, & \Delta < \Phi(0.2) \\ \text{recruit 10/10 from } G_1 \text{ and } G_2, & \Phi(0.2) \leq \Delta \leq \Phi(0.8) \\ \text{recruit 20 from } G_1, & \Delta > \Phi(0.8) \end{cases}$

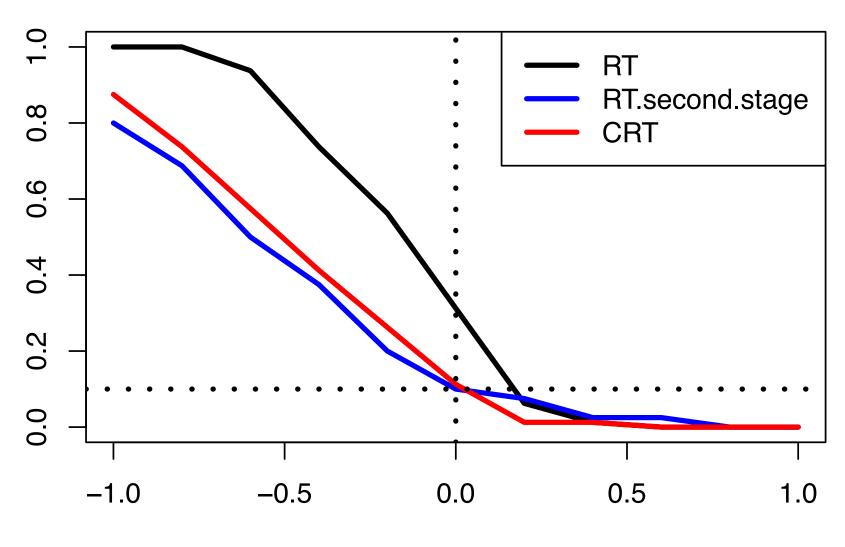
Simulation Study

unconditional

- Null hypothesis: $Y_i(1) Y_i(0) = c$ for the selected group(s)
- Test statistic T: Difference in means in selected group(s)



conditional, both subgroups

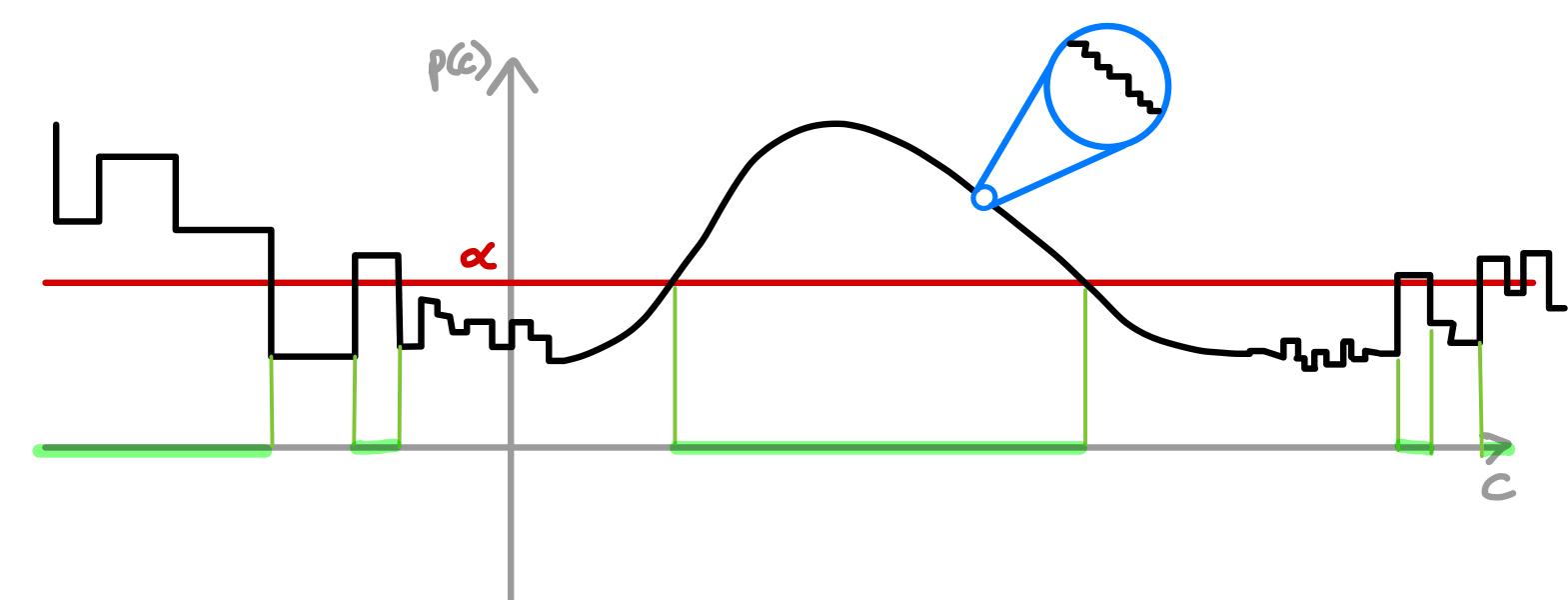


treatment effect

treatment effect

Confidence intervals

- Test collection of null hypotheses H_0^c :
- P-value curve: p(c); possibly not uni-modal because of conditioning
- For large or small effect c: very few feasible treatment assignments
- Remedy: hold-out set of patients that are not used for selection



$$Y_i(0) - Y_i(1) = c$$

Computation of p-value

• Monte Carlo approximation: Generate *m* feasible samples $(w_i^*)_{i=1}^m$, i.e. $S(w) = S(w_i^*)$, and compute

$$\hat{p}_{m} = \frac{\sum_{i=1}^{m} \mathbf{1}_{\{T(w_{j}^{*}) \le T(w)\}} \mathbb{P}^{*}(W^{*} = w^{*} \mid R, X_{R}, Y_{R}(\cdot))}{\sum_{i=1}^{m} \mathbb{P}^{*}(W^{*} = w^{*} \mid R, X_{R}, Y_{R}(\cdot))}$$

- Two methods: Rejection sampling and Markov Chain Monte Carlo (MCMC)
- Ongoing work on convergence guarantees

Summary

- Intersection of post-selection inference, adaptive (clinical) trials and randomization inference
- Graphical model
- Selective randomization p-value
- Construction of selective confidence intervals
- Monte Carlo approximation

Thanks for your attention! Any Questions?

taf40@cam.ac.uk

References

Armitage, P.M.A. (1960). 'Sequential medical trials', Blackwell Scientific Publications.

Fisher, R. A. (1935). 'The design of experiments', Edinburgh: Oliver & Boyd.

Fithian, W., Sun, D. and Taylor, J. (2017) 'Optimal Inference After Model Selection', arXiv:1410.2597

Annals of Statistics, 44(3).

191–199.

covariate adaptive randomization', Statistics & Probability Letters, 81(7), pp. 767–772.

pp. 1–15.

- Cox, D.R. (1975) 'A note on data-splitting for the evaluation of significance levels', Biometrika, 62(2), pp. 441–444.
- Lee, J.D., Sun, D.L., Sun, Y., Taylor J. (2016) 'Exact post-selection inference, with application to the lasso', The
- Pocock, S. J. (1977). 'Group sequential methods in the design and analysis of clinical trials' Biometrika 64(2), pp.
- Simon, R. and Simon, N.R. (2011) 'Using randomization tests to preserve type I error with response adaptive and
- Zhang, Y. and Zhao, Q. (2023) 'What is a Randomization Test?', Journal of the American Statistical Association, 0(0),