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Post-selection Inference - Toy Example
Linear regression with  covariates and : 


Task: Find the 5 most influential features and construct 90%-confidence intervals for their 
regression coefficients.


Ground truth:  for all 


50 n = 300 Yi =
50

∑
i=1

Xij βj + εi, εi ∼ N(0,1)

βj = 0 j ∈ {1,…,50}
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Post-selection Inference
• Traditional statistics: model & null hypothesis  data  inference


• Yet, in practice: data  model & null hypothesis  inference


• Solutions:


• Data splitting (Cox, 1975): potential loss of power, arbitrary splits


• Selective inference (Lee et al., 2016; Fithian et al., 2017):


• null hypothesis and model are chosen based on data  via selection rule 


• Condition on selection event:    selective distribution 


• Selective p-value: 

→ →

→ →

D S(D)

D ∣ S(D) = s

ℙ (Ts(D) ≤ ts,obs ∣ S(D) = s)



Adaptive Clinical Trials
• Objectives: determine safe dosage, most effective treatment, responsive subpopulation


• Multiple stages


• Adaptive designs: response adaptive randomisation (RAR), multi-arm multi-stage 
(MAMS), enrichment trials etc.  selective recruitment and treatment assignment  

• Analysis of adaptive studies:


• Well-known problem, e.g. Armitage (1960), Pocock (1977) etc.


• Specific to a certain parametric model or aggregation of p-values


• Unaware of post-selection inference literature


• Remark: connection to bandit literature

→



Randomization Inference - Example
• Study with  participants testing 2 treatments


• Treatment assignment: ;        chosen by experimenter


• Potential outcomes of participants: 


• Observed outcomes:                                                                                    consistency


• Sharp null hypothesis:      all potential outcomes  are known


• Randomization distribution of test statistic :  


• Randomization p-value:


 and 

n

W ∈ {0,1}n ℙ(W = w)

Y( ⋅ ) = (Yi(0), Yi(1))n
i=1

Y = Y(W)

Yi(0) = Yi(1) ∀i ∈ [n] → Y( ⋅ )

T T(W, Y( ⋅ )) ∣ Y( ⋅ )

p = ℙ*( T(W*, Y( ⋅ )) ≤ T(W, Y( ⋅ )) ∣ W, Y( ⋅ )), W* D= W W* ⊥⊥ W ∣ Y( ⋅ )



Randomization Inference
• Revival (Zhang & Zhao, 2023) of an old idea (Fisher, 1935)


• Leveraging known treatment assignment probability


• Extensions: conditional randomization test, partially sharp null hypotheses


• Pros: no modelling assumptions, arbitrary dependence between units


• Cons: uninteresting null hypothesis, computation of p-value



Adaptive Trials - Set-up
• Two-stage adaptive trial


• Potential outcomes  and covariates 


• Recruitment for stages I and II:  


• Observed outcomes:  and 


• Treatment assignments for stages I and II: 



• Summary statistics after stage I and II:                                  models 


• Assumptions: Consistency, No interference

Y( ⋅ ) = Y[n]( ⋅ ) X = X[n]

R1 ⊆ [n], R2 ⊆ [n]∖R1, R = R1 ∪ R2

YR1
YR2

W1 ∈ {0,…, L}|R1|, W2 ∈ {0,…, L}|R2|, W = (W1, W2)

S = (S1, S2) S2 H0



Adaptive Studies - Graphical Model
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Selective Randomization Inference
• Selective randomization distribution: W1, W2 ∣ SR, XR, YR( ⋅ ),



Adaptive Studies - Graphical Model
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Selective Randomization Inference
• Selective randomization distribution: 


• Selective randomization p-value:


• Test statistic: 


•  and 


• 


• Lemma:  controls the selective type-I error.              Simon & Simon (2011): special case


• Remark: Factorization without gray arrows 

W1, W2 ∣

T(W) := T(W, XR, R, YR( ⋅ ))

W* D= W W* ⊥⊥ W ∣ R, XR, YR( ⋅ )

p = ℙ*( T(W*) ≤ T(W) ∣ W, R, XR, YR( ⋅ ), S(W*) = S(W))

p

p(w ∣ r, xr, yr( ⋅ ), s, h) = p(w1 ∣ r1, xr1
, yr1

( ⋅ ), s) ⋅ p(w2 ∣ r2, xr2
, yr2

( ⋅ ), s, h)

S(W)R, XR, YR( ⋅ ),



Simulation Study
• 2 stages, 2 treatments, 2 groups 


• Potential outcomes:  i.i.d.


• First stage: 20 patients per group, 


• Selection variable: 

G1, G2

Yi(0) = Yi(1) ∼ N(0,1)

Δ = [ ̂ATE (G1) − ̂ATE (G2)]/ 2

S =
recruit 20 from G2, Δ < Φ(0.2)
recruit 10/10 from G1 and G2, Φ(0.2) ≤ Δ ≤ Φ(0.8)
recruit 20 from G1, Δ > Φ(0.8)
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Simulation Study
• Null hypothesis:  for the selected group(s)


• Test statistic : Difference in means in selected group(s)

Yi(1) − Yi(0) = c

T

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

conditional, both subgroups

treatment effect

re
je

ct
io

n 
pr

ob
ab

ilit
y

RT
RT.second.stage
CRT

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

unconditional

treatment effect

re
je

ct
io

n 
pr

ob
ab

ilit
y

RT
RT.second.stage
CRT



Confidence intervals
• Test collection of null hypotheses 


• P-value curve: ; possibly not uni-modal because of conditioning


• For large or small effect : very few feasible treatment assignments


• Remedy: hold-out set of patients that are not used for selection

Hc
0 : Yi(0) − Yi(1) = c

p(c)

c

ar
:

X
-



Computation of p-value

• Monte Carlo approximation: Generate  feasible samples , i.e. 
, and compute


 


• Two methods: Rejection sampling and Markov Chain Monte Carlo (MCMC)


• Ongoing work on convergence guarantees

m (w*j )m
j=1

S(w) = S(w*j )

̂pm =
∑m

i=1 1{T(w*j )≤T(w)} ℙ*(W* = w* ∣ R, XR, YR( ⋅ ))

∑m
i=1 ℙ*(W* = w* ∣ R, XR, YR( ⋅ ))



Summary
• Intersection of post-selection inference, adaptive (clinical) trials and 

randomization inference


• Graphical model


• Selective randomization p-value


• Construction of selective confidence intervals


• Monte Carlo approximation



Thanks for your attention! 

Any Questions?

taf40@cam.ac.uk
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