Bernoulli-IMS 11th World Congress in Probability and Statistics — 12/08/2024

Selective Randomization Inference for Adaptive Experiments

Tobias Freidling

Statistical Laboratory, DPMMS University of Cambridge

Collaborators

Qingyuan Zhao

Statistical Laboratory, DPMMS University of Cambridge

Zijun Gao

Marshall School of Business University of Southern California

 $,Z_i, X_i)_{i=1,...,n}$ \longrightarrow

 \rightarrow Inference without modelling- or i.i.d. data-assumptions

- $,Z_i, X_i)_{i=1,...,n}$ \longrightarrow
- Potential outcomes: $Y_i(0), Y_i(1) \longrightarrow$ Realized outcomes: $Y_i = Y_i(Z_i)$

 \rightarrow Inference without modelling- or i.i.d. data-assumptions

- $,Z_i, X_i)_{i=1,...,n}$ \longrightarrow
- Potential outcomes: $Y_i(0), Y_i(1) \longrightarrow$ Realized outcomes: $Y_i = Y_i(Z_i)$
- Distribution of *Z* is **known** and *Z* ⊥⊥ *Y*(⋅) ∣ *X*

 \rightarrow Inference without modelling- or i.i.d. data-assumptions

- $,Z_i, X_i)_{i=1,...,n}$ \longrightarrow
- Potential outcomes: $Y_i(0), Y_i(1) \longrightarrow$ Realized outcomes: $Y_i = Y_i(Z_i)$
- Distribution of *Z* is **known** and *Z* ⊥⊥ *Y*(⋅) ∣ *X*
- Null hypothesis: $Y_i(1) Y_i(0) = 0$ for all *i*
- Test statistic: $T(Z, Y(\cdot), X)$

 \rightarrow Inference without modelling- or i.i.d. data-assumptions

- $,Z_i, X_i)_{i=1,...,n}$ \longrightarrow
- Potential outcomes: $Y_i(0), Y_i(1) \longrightarrow$ Realized outcomes: $Y_i = Y_i(Z_i)$
- Distribution of *Z* is **known** and *Z* ⊥⊥ *Y*(⋅) ∣ *X*
- Null hypothesis: $Y_i(1) Y_i(0) = 0$ for all *i*
- Test statistic: $T(Z, Y(\cdot), X)$
- $T(Z^*, Y(~\cdot~), X)$ under alternative treatment assignments Z^* .

 \rightarrow Inference without modelling- or i.i.d. data-assumptions

• Condition on $Y(·), X$ and compare observed value of statistic $T(Z, Y(·), X)$ against values

- $,Z_i, X_i)_{i=1,...,n}$ \longrightarrow
- Potential outcomes: $Y_i(0), Y_i(1) \longrightarrow$ Realized outcomes: $Y_i = Y_i(Z_i)$
- Distribution of *Z* is **known** and *Z* ⊥⊥ *Y*(⋅) ∣ *X*
- Null hypothesis: $Y_i(1) Y_i(0) = 0$ for all *i*
- Test statistic: $T(Z, Y(\cdot), X)$
- $T(Z^*, Y(~\cdot~), X)$ under alternative treatment assignments Z^* .
- P-value: $\mathbb{P}(\ T(Z^*, Y(\cdot), X) \leq T(Z, Y(\cdot), X) | Y(\cdot), X, Z),$ where $Z^* \stackrel{D}{=} Z$ and $Z^* \perp\!\!\!\perp Z \mid Y(\cdot), X$

 \rightarrow Inference without modelling- or i.i.d. data-assumptions

• Condition on $Y(·), X$ and compare observed value of statistic $T(Z, Y(·), X)$ against values

Example

Example

Graphical Model

-
-
-
- -
-
-

Graphical Model

$$
\boxed{X, Y(\ \cdot \)}
$$

- Covariates: *X*
- Potential outcomes: *Y*(⋅)

- Covariates: *X*
- Potential outcomes: *Y*(⋅)

- Covariates: *X*
- Potential outcomes: *Y*(⋅)
- Recruitment: $R_k \subseteq [n]$
- Treatments: Z_k
- Observed outcomes: $Y = Y(Z)$

- Covariates: *X*
- Potential outcomes: *Y*(⋅)
- Recruitment: $R_k \subseteq [n]$
- Treatments: Z_k
- Observed outcomes: $Y = Y(Z)$

- Covariates: *X*
- Potential outcomes: *Y*(⋅)
- Recruitment: $R_k \subseteq [n]$
- Treatments: Z_k
- Observed outcomes: $Y = Y(Z)$
- Selective choice: S_k

- Covariates: *X*
- Potential outcomes: *Y*(⋅)
- Recruitment: $R_k \subseteq [n]$
- Treatments: Z_k
- Observed outcomes: $Y = Y(Z)$
- Selective choice: S_k
- Short-hand: $W = (R, X_R, Y_R(\cdot))$

 X_{R_2}

<u>Stage 2</u>

 $R₂$

 $Y_{R_2}(\cdot)$

• **Assumption (A1):** *K* ∏ *k*=1

 $q(z | w) := \prod P(Z_k = z_k | R_{[k]} = r_{[k]}, X_{R_{[k]}} = x_{R_{[k]}}, Y_{R_{[k-1]}} = y_{R_{[k-1]}}, Z_{[k-1]} = z_{[k-1]})$ is known. $\mathbb{P}(Z_k = z_k \mid R_{[k]} = r_{[k]}, X_{R_{[k]}} = x_{R_{[k]}}, Y_{R_{[k-1]}} = y_{R_{[k-1]}}, Z_{[k-1]} = z_{[k-1]})$

- **Assumption (A1):** *K* ∏ *k*=1 $\mathbb{P}(Z_k = z_k \mid R_{[k]} = r_{[k]}, X_{R_{[k]}})$
- **Assumption (A2):** $Z_k \perp\!\!\!\perp Y_{R_{[k]}}(\cdot) \mid R_{[k]}.$

$$
q(z \mid w) := \prod_{k=1} \mathbb{P}(Z_k = z_k \mid R_{[k]} = r_{[k]}, X_{R_{[k]}} = x_{R_{[k]}}, Y_{R_{[k-1]}} = y_{R_{[k-1]}}, Z_{[k-1]} = z_{[k-1]})
$$
 is known.
Assumption (A2):
$$
Z_k \perp \!\!\!\perp Y_{R_{[k]}}(\cdot) \mid R_{[k]}, X_{R_{[k]}}, Y_{R_{[k-1]}}, Z_{[k-1]} \qquad \forall k \in [K]
$$

- **Assumption (A1):** *K* ∏ *k*=1 $\mathbb{P}(Z_k = z_k \mid R_{[k]} = r_{[k]}, X_{R_{[k]}})$
- **Assumption (A2):**
- $Z_k \perp \!\!\! \perp Y_{R_{[k]}}(\ \cdot \) \mid R_{[k]} \cdot \$
- Assumption (A3):

$$
q(z \mid w) := \prod_{k=1} \mathbb{P}(Z_k = z_k \mid R_{[k]} = r_{[k]}, X_{R_{[k]}} = x_{R_{[k]}}, Y_{R_{[k-1]}} = y_{R_{[k-1]}}, Z_{[k-1]} = z_{[k-1]})
$$
 is known.

 $, Y_{R_k}(\cdot) \perp Z_{[k-1]} | W_{[k-1]}$, *Sk*−¹ ∀ *k* ∈ [*K*]

$$
P, X_{R_{[k]}}, Y_{R_{[k-1]}}, Z_{[k-1]} \qquad \forall k \in [K]
$$

• Dependence between data points; strong (parametric) assumptions are risky

- Dependence between data points; strong (parametric) assumptions are risky
- Distribution of $Z = (Z_1, ..., Z_K)$ is known

- Dependence between data points; strong (parametric) assumptions are risky
- Distribution of $Z = (Z_1, ..., Z_K)$ is known
- Null hypothesis: $Y_i(1) Y_i(0) = 0$ for all/subset of units
- Condition on W and compare observed value of statistic $T(Z, W)$ against values $T(Z^*,W)$ under alternative treatment assignments Z^* .
- $\mathbb{P}(T(Z^*,W) \leq T(Z,W) \mid W,Z)$, where $Z^* \stackrel{D}{=} Z$ and $Z^* \perp Z \mid W$

- Dependence between data points; strong (parametric) assumptions are risky
- Distribution of $Z = (Z_1, ..., Z_K)$ is known
- Null hypothesis: $Y_i(1) Y_i(0) = 0$ for all/subset of units
- Condition on W and compare observed value of statistic $T(Z, W)$ against values $T(Z^*,W)$ under alternative treatment assignments Z^* .
- $\mathbb{P}(T(Z^*,W) \leq T(Z,W) \mid W,Z)$, where $Z^* \stackrel{D}{=} Z$ and $Z^* \perp Z \mid W$
- Is there a problem when the experiment is adaptive?

- Using data twice (double dipping)
- Comparing to *Z** that choose different stage-II design or null hypothesis than *Z*

- Using data twice (double dipping)
- Comparing to *Z** that choose different stage-II design or null hypothesis than *Z*
- Result: Type-I error inflation

- Using data twice (double dipping)
- Comparing to *Z** that choose different stage-II design or null hypothesis than *Z*
- Result: Type-I error inflation
- Solutions:
	- Data splitting (Cox, 1975):

$(W, W) \leq T(Z, W) \mid W, Z, Z^* = Z_1$, where $K = 2$

- Using data twice (double dipping)
- Comparing to *Z** that choose different stage-II design or null hypothesis than *Z*
- Result: Type-I error inflation
- Solutions:
	- Data splitting (Cox, 1975):
	-

$(W, W) \leq T(Z, W) \mid W, Z, Z^* = Z_1$, where $K = 2$

• Selective inference (Lee et al., 2016; Fithian et al., 2017): regression models etc.

- Using data twice (double dipping)
- Comparing to *Z** that choose different stage-II design or null hypothesis than *Z*
- Result: Type-I error inflation
- Solutions:
	- Data splitting (Cox, 1975):
	-
	- Selective randomization inference:

• Selective inference (Lee et al., 2016; Fithian et al., 2017): regression models etc.

$$
P_{sel} = \mathbb{P}(T(Z^*, W) \leq T(Z, W) \mid W, Z, S(Z^*) = S(Z))
$$

$(W, W) \leq T(Z, W) \mid W, Z, Z^* = Z_1$, where $K = 2$

$$
P_{sel} = \mathbb{P}(T(Z^*, W) \le T
$$

 $F(Z, W) | W, Z, S(Z^*) = S(Z)$

$$
P_{sel} = \mathbb{P}(T(Z^*, W) \le T
$$

 $W(Z, W) \mid W, Z, S(Z^*) = S(Z)$

• Under Assumptions (A1) – (A3), the selective randomization p-value is computable.

- Under Assumptions (A1) (A3), the selective randomization p-value is computable.
- Formula for the selective randomization distribution:

$$
\mathbb{P}(Z = z \mid W = w, S(Z) = s) = \frac{\mathbf{1}\{S(z) = s\} \cdot q(z \mid w)}{\sum_{z'} \mathbf{1}\{S(z') = s\} \cdot q(z' \mid w)}
$$

$$
P_{sel} = \mathbb{P}(T(Z^*, W) \leq T(Z, W) \mid W, Z, S(Z^*) = S(Z))
$$

- Under Assumptions (A1) (A3), the selective randomization p-value is computable.
- Formula for the selective randomization distribution:

$$
\mathbb{P}(Z = z \mid W = w, S(Z) = s) = \frac{\mathbf{1}\{S(z) = s\} \cdot q(z \mid w)}{\sum_{z'} \mathbf{1}\{S(z') = s\} \cdot q(z' \mid w)}
$$

• Formula for p-value:

$$
P_{sel} = \frac{\sum_{z^*} \mathbf{1} \{ T(z^*, W) \le T(Z, W) \} \cdot \mathbf{1} \{ S(z^*) = S(Z) \} \cdot q(z^* | W)}{\sum_{z^*} \mathbf{1} \{ S(z^*) = S(Z) \} \cdot q(z^* | W)}
$$

$$
P_{sel} = \mathbb{P}(T(Z^*, W) \leq T(Z, W) \mid W, Z, S(Z^*) = S(Z))
$$

Computation

$$
P_{sel} = \mathbb{P}(T(Z^*, W) \le T
$$

Computation

and compute

$$
\hat{P}_M := \frac{1 + \sum_{j=1}^M \mathbb{1}\{T(z_j^*, W) \le T(Z, W)\}}{1 + M}.
$$

 $F(Z, W) | W, Z, S(Z^*) = S(Z)$

• Monte Carlo approximation: Generate M feasible samples $(z_j^*)_{j=1}^M$, i.e. $S(z_j^*) = S(Z)$, *M* $J_{j=1}^{M}$, i.e. $S(z_{j}^{*}) = S(Z)$

 $\int_{j=1}^{M} \mathbf{1} \{ T(z_j^*, W) \leq T(Z, W) \}$

1 + *M*

$$
P_{sel} = \mathbb{P}(T(Z^*, W) \le T
$$

Computation

$$
\hat{P}_M := \frac{1 + \sum_{j=1}^M \mathbb{1}\{T(z_j^*, W) \le T(Z, W)\}}{1 + M}.
$$

• Rejection sampling, Markov Chain Monte Carlo (MCMC)

 $F(Z, W) | W, Z, S(Z^*) = S(Z)$

$\int_{j=1}^{M} \mathbf{1} \{ T(z_j^*, W) \leq T(Z, W) \}$

 $1 + M$

$$
P_{sel} = \mathbb{P}(T(Z^*, W) \le T
$$

• Monte Carlo approximation: Generate M feasible samples $(z_j^*)_{j=1}^M$, i.e. $S(z_j^*) = S(Z)$, and compute *M* $J_{j=1}^{M}$, i.e. $S(z_{j}^{*}) = S(Z)$

$$
P_{sel} = \mathbb{P}(T(Z^*, W) \le T
$$

- Confidence intervals:
	- test $Y_i(1) Y_i(0) = \tau$ for different τ
	- (1 − *α*) confidence interval: $C_{1-\alpha} = \{ \tau : P_{\text{sel}}(\tau) \ge \alpha \}$

$$
P_{sel} = \mathbb{P}(T(Z^*, W) \le T
$$

- Confidence intervals:
	- test $Y_i(1) Y_i(0) = \tau$ for different τ
	- (1 − *α*) confidence interval: $C_{1-\alpha} = \{ \tau : P_{\text{sel}}(\tau) \ge \alpha \}$
- Estimation: τ such that $P_{\text{sel}}(\tau) = 0.5$

$$
P_{sel} = \mathbb{P}(T(Z^*, W) \le T
$$

- Confidence intervals:
	- test $Y_i(1) Y_i(0) = \tau$ for different τ
	- (1 − *α*) confidence interval: $C_{1-\alpha} = \{ \tau : P_{\text{sel}}(\tau) \ge \alpha \}$
- Estimation: τ such that $P_{\text{sel}}(\tau) = 0.5$
- Data carving: non-adaptive hold-out units

$$
P_{sel} = \mathbb{P}(T(Z^*, W) \le T
$$

-
-
-
-
-
- -

- 2 stages, 2 treatments $Z_i \in \{0,1\}$, 2 groups $X_i \in \{$ low, high $\}$
- Potential outcomes: $Y_i(0) = Y_i(1) \sim N(0,1)$ i.i.d.
- First stage: 100 patients, Second stage: 40 patients

- 2 stages, 2 treatments $Z_i \in \{0,1\}$, 2 groups $X_i \in \{$ low, high $\}$
- Potential outcomes: $Y_i(0) = Y_i(1) \sim N(0,1)$ i.i.d.
- First stage: 100 patients, Second stage: 40 patients
- Δ = standardized difference in SATEs between groups

- 2 stages, 2 treatments $Z_i \in \{0,1\}$, 2 groups $X_i \in \{low, high\}$
- Potential outcomes: $Y_i(0) = Y_i(1) \sim N(0,1)$ i.i.d.
- First stage: 100 patients, Second stage: 40 patients
- Δ = standardized difference in SATEs between groups
- Selection variable:

$$
S = \begin{cases} \text{only low,} & \Delta < \Phi^{-1}(0.2), \\ \text{only high,} & \Delta > \Phi^{-1}(0.8), \\ \text{both,} & \text{otherwise,} \end{cases}
$$

recruit 40 from group $X_i =$ low recruit 40 from group $X_i =$ high recruit 20 from each group

- **RT 2nd: Wild but has low power** RT 2nd **RT**
- Selective RT: **valid and more powerful**.
- Rejection sampling and MCMC lead to very similar approximations. R
O.C.
C.C. rejection probability

• RT: **no type-I error control** MCMC RS

 AC

nd?

 \bullet

 AC

nd?

• Type-I error control in every subgroup

 AC

nd?

- Type-I error control in every subgroup
- Gain in power when there is a lot of "randomness left"

Conclusion

- Experiments with adaptive treatments, recruitment and null hypothesis
- Visualization via DAGs
-
- Computability under general assumptions
- Approximation via rejection sampling or MCMC

• Key idea: Conditioning randomization p-value on the selection information

Thanks for your attention!

taf40@cam.ac.uk

References

Fisher, R. A. (1935). 'The design of experiments', Edinburgh: Oliver & Boyd.

Fithian, W., Sun, D. and Taylor, J. (2017) 'Optimal Inference After Model Selection', arXiv:1410.2597

Annals of Statistics, 44(3).

- Cox, D.R. (1975) 'A note on data-splitting for the evaluation of significance levels', Biometrika, 62(2), pp. 441–444.
	-
- Lee, J.D., Sun, D.L., Sun, Y., Taylor J. (2016) 'Exact post-selection inference, with application to the lasso', The
- Marston, N.A. et al. (2020) 'Predicting Benefit From Evolocumab Therapy in Patients With Atherosclerotic Disease
- Pitman, E.J.G. (1937) 'Significance Tests Which May be Applied to Samples From any Populations', Supplement
- Zhang, Y. and Zhao, Q. (2023) 'What is a Randomization Test?', Journal of the American Statistical Association,

Using a Genetic Risk Score', Circulation, 141(8), pp. 616–623.

to the Journal of the Royal Statistical Society, 4(1), pp. 119–130.

0(0), pp. 1–15.

Hold-out Units

