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Randomization Inference — Standard Set-up
• Dataset: Inference without modelling- or i.i.d. data-assumptions(Yi, Zi, Xi)i=1,…,n →

• Potential outcomes: Realized outcomes: Yi(0), Yi(1) → Yi = Yi(Zi)

• Distribution of  is known and Z Z ⊥⊥ Y( ⋅ ) ∣ X

• Null hypothesis:  for all Yi(1) − Yi(0) = 0 i

• Test statistic: T(Z, Y( ⋅ ), X)

• Condition on  and compare observed value of statistic  against values 
 under alternative treatment assignments .

Y( ⋅ ), X T(Z, Y( ⋅ ), X)
T(Z*, Y( ⋅ ), X) Z*

• P-value: ℙ( T(Z*, Y( ⋅ ), X) ≤ T(Z, Y( ⋅ ), X) ∣ Y( ⋅ ), X, Z),

    where  and Z* D= Z Z* ⊥⊥ Z ∣ Y( ⋅ ), X
Fisher (1935), Pitman (1937), Zhang & Zhao (2023)
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Z1

YR1 S1 S2

X, Y( ⋅ )

• Covariates: X

• Potential outcomes: Y( ⋅ )

• Recruitment: Rk ⊆ [n]

• Treatments: Zk

• Observed outcomes: Y = Y(Z)

• Selective choice:                Sk

• Short-hand:                                                                 W = (R, XR, YR( ⋅ ))
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Using Randomization Inference?
• Dependence between data points; strong (parametric) assumptions are risky

• Distribution of  is knownZ = (Z1, …, ZK)

• Null hypothesis:  for all/subset of unitsYi(1) − Yi(0) = 0

• Condition on  and compare observed value of statistic  against values 
 under alternative treatment assignments .

W T(Z, W)
T(Z*, W) Z*

• where  and ℙ( T(Z*, W) ≤ T(Z, W) ∣ W, Z), Z* D= Z Z* ⊥⊥ Z ∣ W

• Is there a problem when the experiment is adaptive?
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• Result: Type-I error inflation

• Solutions:

• Data splitting (Cox, 1975):      , where ℙ( T(Z*, W) ≤ T(Z, W) ∣ W, Z, Z*1 = Z1) K = 2

• Selective inference (Lee et al., 2016; Fithian et al., 2017): regression models etc.

• Selective randomization inference:

Psel = ℙ( T(Z*, W) ≤ T(Z, W) ∣ W, Z, S(Z*) = S(Z) )
8



Computability

9

Psel = ℙ( T(Z*, W) ≤ T(Z, W) ∣ W, Z, S(Z*) = S(Z) )



Computability

• Under Assumptions (A1) — (A3), the selective randomization p-value is computable.

9

Psel = ℙ( T(Z*, W) ≤ T(Z, W) ∣ W, Z, S(Z*) = S(Z) )



Computability

• Under Assumptions (A1) — (A3), the selective randomization p-value is computable.

• Formula for the selective randomization distribution:

ℙ(Z = z ∣ W = w, S(Z) = s) =
1{S(z) = s} ⋅ q(z ∣ w)

∑z′ 

1{S(z′ ) = s} ⋅ q(z′ ∣ w)

9

Psel = ℙ( T(Z*, W) ≤ T(Z, W) ∣ W, Z, S(Z*) = S(Z) )



Computability

• Under Assumptions (A1) — (A3), the selective randomization p-value is computable.

• Formula for the selective randomization distribution:

ℙ(Z = z ∣ W = w, S(Z) = s) =
1{S(z) = s} ⋅ q(z ∣ w)

∑z′ 
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• Formula for p-value:
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and compute

M (z*j )M
j=1 S(z*j ) = S(Z)

.̂PM :=
1 + ∑M

j=1 1{T(z*j , W) ≤ T(Z, W)}

1 + M

• Rejection sampling, Markov Chain Monte Carlo (MCMC)
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Inference

• Confidence intervals:

• test  for different  Yi(1) − Yi(0) = τ τ

•  confidence interval: (1 − α) C1−α = {τ : Psel(τ) ≥ α}

• Estimation:  such that τ Psel(τ) = 0.5

• Data carving: non-adaptive hold-out units
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Simulation Study
• 2 stages, 2 treatments , 2 groups Zi ∈ {0,1} Xi ∈ {low, high}

• Potential outcomes:  i.i.d.Yi(0) = Yi(1) ∼ N(0,1)

• First stage: 100 patients, Second stage: 40 patients

• standardized difference in SATEs between groupsΔ =

• Selection variable:

S =
only low, Δ < Φ−1(0.2), recruit 40 from group Xi = low

only high, Δ > Φ−1(0.8), recruit 40 from group Xi = high
both, otherwise, recruit 20 from each group
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• RT: no type-I error control

• RT 2nd: valid but has low power
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• Selective RT: valid and more powerful.
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Power Analysis

• RT: no type-I error control

• RT 2nd: valid but has low power

• Selective RT: valid and more powerful.

• Rejection sampling and MCMC lead to 
very similar approximations.
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Power Analysis

• Type-I error control in every subgroup

14

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

unconditional

τ

re
je

ct
io

n 
pr

ob
ab

ilit
y

MCMC
RS
RT 2nd
RT

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

subgroup X=high

τ

re
je

ct
io

n 
pr

ob
ab

ilit
y

MCMC
RS
RT 2nd
RT

−1.0 −0.5 0.0 0.5 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

subgroup X=low

τ

re
je

ct
io

n 
pr

ob
ab

ilit
y

MCMC
RS
RT 2nd
RT

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

both subgroups

τ

re
je

ct
io

n 
pr

ob
ab

ilit
y

MCMC
RS
RT 2nd
RT



Power Analysis

• Type-I error control in every subgroup

• Gain in power when there is a lot of “randomness left”
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Conclusion
• Experiments with adaptive treatments, recruitment and null hypothesis


• Visualization via DAGs


• Key idea: Conditioning randomization p-value on the selection information 

• Computability under general assumptions


• Approximation via rejection sampling or MCMC
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