Selective Randomization Inference for Adaptive Studies
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Analysing Adaptive Studies
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Adaptive Studies = Covariates X and potential = Observed outcomes:
= Characteristics: Recruitment, treatment assignment and null outcomes Y (-) of population  Yp =Yg (Z))
hypothesis can depend on data from previous stages = Recruitment: R,, R, = Selective choice: S, S,
= Benefits: reacting to external circumstances, more ethical = Treatment assignment: Z,, Z, = Short-hand: W = (R, Xg, Yr(*))

treatment allocation, saving time and money [1]

Data Analysis . .
- Difﬁcult);/: data informs design and null hypothesis — risk of Simulation StUdy
double dipping = 2 stages, 2 treatments Z; € {0, 1}, 2 groups X; € {O, 1}
= Existing methods: design-specific, strong assumptions = Potential outcomes: Y;(0) = Y;(1) ~ N(O, 1) i.i.d.
= Qur approach: randomization inference — no modelling = First stage: 50 patients
assumptions or i.i.d. data needed = A = standardized difference in SATEs between groups

= Selection variable and recruitment in second stage:

_ _ _ 0, A<®0.2), recruit 25 from group X; = 0,
Selective Randomization P-value S={1, A>®10.8), recruit25fromgroup X, = 1,

Insight: only use randomness of Z as its distribution is known 2, otherwise, recruit 13/12.

Testing the null hypothesis Power analysis: o unconditional
Ho: Y.(1)-Y;(0)=0 for all i € R (or a subset) - S B
. o b * = Type-| error control o : =T ond
with the statistic 7. (Z*=Zand Z*1L. Z | W) overall and in > o~ . | RT
= Usual randomization p—value[Z]: invalid due to double dipping i;'bgmum _— ‘:g
. . = More powertul than S
PAT(Z W) <T(Z,W)]Z,W) data splitting S
= Data splitting[3] / 2" stage randomization p-value: loses power = Similar approximations 9
P(T(Z W) <T(ZW)|ZW, 7 =7, for rejection sampling
and MCMC
= Selective randomization p-value: valid & more powerful [4, 5]
p(Z) — P*(T(Z*,W)ST(Z,W)\Z,W, S(ZI):S(Zl)) B

both subgroups

Inference and Computation

Inference for a homogeneous treatment effect § = Y;(1) — Y;(0),
where i € R (or a subset):
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* (1 — a) confidence interval: inversion of tests {B: pg(Z) = a}
* Estimation: B = B such that ps(Z) = 0.5

Computation of p-value via Monte Carlo approximation References
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where sample (z;);Z, is generated via rejection sampling or MCMC
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