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Analysing Adaptive Studies
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Adaptive Studies

Characteristics: Recruitment, treatment assignment and null

hypothesis can depend on data from previous stages

Benefits: reacting to external circumstances, more ethical

treatment allocation, saving time and money [1]

Data Analysis

Difficulty: data informs design and null hypothesis→ risk of

double dipping

Existing methods: design-specific, strong assumptions

Our approach: randomization inference→ no modelling

assumptions or i.i.d. data needed

Selective Randomization P-value
Insight: only use randomness of 𝑍 as its distribution is known

Testing the null hypothesis

H0 ∶ 𝑌𝑖(1) − 𝑌𝑖(0) = 0 for all 𝑖 ∈ 𝑅 (or a subset)
with the statistic 𝑇. (𝑍∗ 𝐷= 𝑍 and 𝑍∗⟂⟂𝑍 ∣ 𝑊)

Usual randomization p-value[2]: invalid due to double dipping

𝑃∗( 𝑇(𝑍∗,𝑊) ≤ 𝑇(𝑍,𝑊) ∣ 𝑍,𝑊)

Data splitting[3] / 2nd stage randomization p-value: loses power

𝑃∗( 𝑇(𝑍∗,𝑊) ≤ 𝑇(𝑍,𝑊) ∣ 𝑍,𝑊, 𝑍∗
1 = 𝑍1)

Selective randomization p-value: valid & more powerful [4, 5]

𝑝(𝑍) ∶= 𝑃∗( 𝑇(𝑍∗,𝑊) ≤ 𝑇(𝑍,𝑊) ∣ 𝑍,𝑊, 𝑆(𝑍∗
1) = 𝑆(𝑍1))

Inference and Computation
Inference for a homogeneous treatment effect 𝛽 = 𝑌𝑖(1) − 𝑌𝑖(0),
where 𝑖 ∈ 𝑅 (or a subset):
(1 − 𝛼) confidence interval: inversion of tests {𝛽 ∶ 𝑝𝛽(𝑍) ≥ 𝛼}
Estimation: 𝛽 = 𝛽 such that 𝑝𝛽(𝑍) = 0.5

Computation of p-value via Monte Carlo approximation

∑𝑚
𝑗=1 1{𝑇(𝑧∗𝑗 ,𝑊) ≤ 𝑇(𝑍,𝑊)} ⋅ 𝑃∗(𝑍∗ = 𝑧∗𝑗 ∣ 𝑊)

∑𝑚
𝑖=1 𝑃∗(𝑍∗ = 𝑧∗𝑗 ∣ 𝑊)

,

where sample (𝑧∗𝑗 )𝑚𝑗=1 is generated via rejection sampling orMCMC

DAG and Notation

Stage 1 Stage 2

𝑌𝑅1

𝑅1, 𝑋𝑅1

𝑍1

𝑆1

𝑌𝑅1(⋅)

𝑌𝑅2

𝑅2, 𝑋𝑅2

𝑍2

𝑆2

𝑌𝑅2(⋅)

𝑋, 𝑌(⋅)

Covariates 𝑋 and potential
outcomes 𝑌(⋅) of population
Recruitment: 𝑅1, 𝑅2

Treatment assignment: 𝑍1, 𝑍2

Observed outcomes:

𝑌𝑅𝑖 = 𝑌𝑅𝑖(𝑍𝑖)
Selective choice: 𝑆1, 𝑆2

Short-hand: 𝑊 = (𝑅, 𝑋𝑅, 𝑌𝑅(⋅))

Simulation Study
2 stages, 2 treatments 𝑍𝑖 ∈ {0, 1}, 2 groups 𝑋𝑖 ∈ {0, 1}
Potential outcomes: 𝑌𝑖(0) = 𝑌𝑖(1) ∼ 𝑁(0, 1) i.i.d.
First stage: 50 patients

Δ = standardized difference in SATEs between groups
Selection variable and recruitment in second stage:

𝑆 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, Δ < Φ−1(0.2), recruit 25 from group 𝑋𝑖 = 0,
1, Δ > Φ−1(0.8), recruit 25 from group 𝑋𝑖 = 1,
2, otherwise, recruit 13/12.

Power analysis:

Type-I error control

overall and in

subgroups

More powerful than

data splitting

Similar approximations

for rejection sampling

and MCMC
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