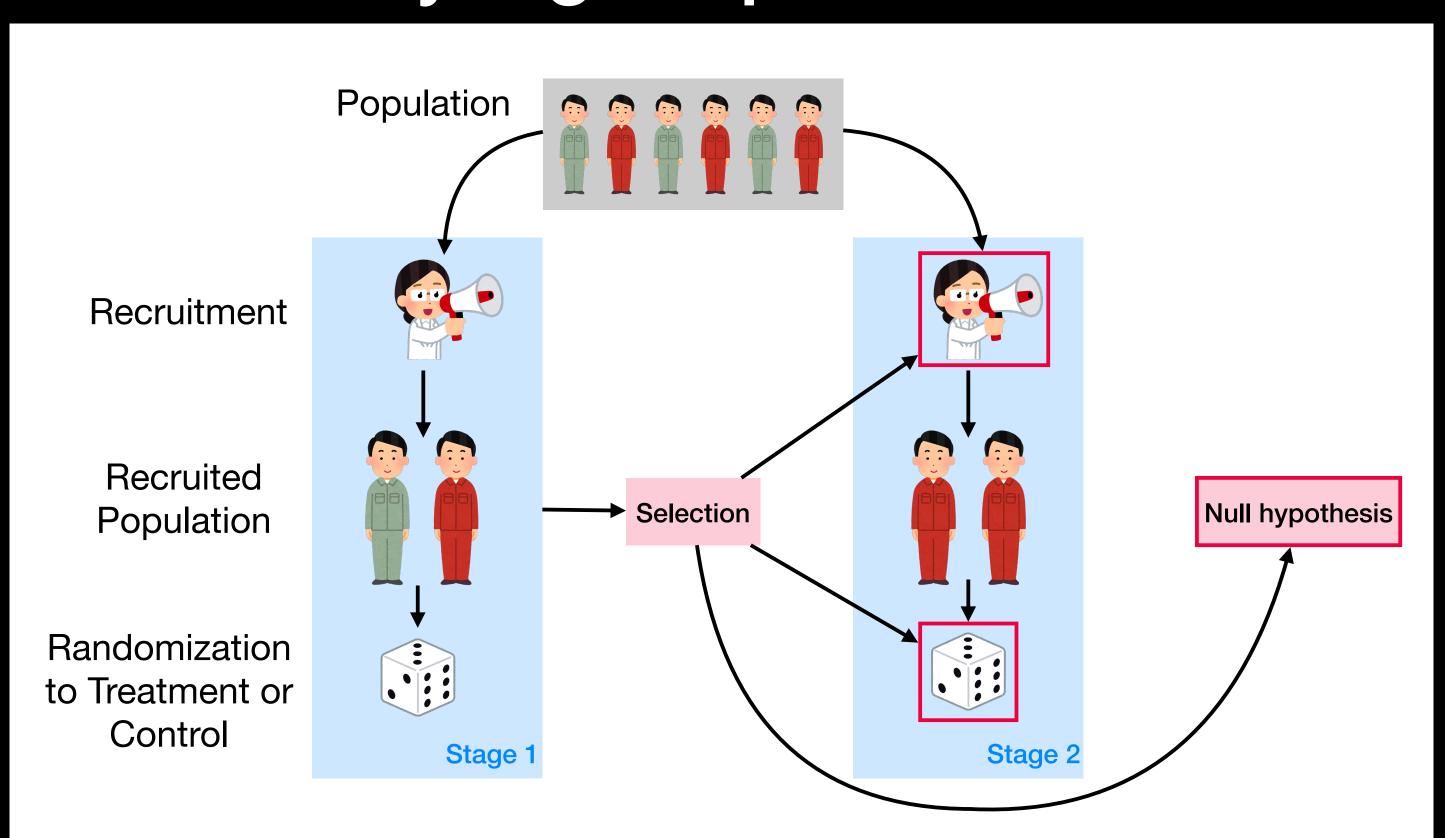
Selective Randomization Inference for Adaptive Studies

Tobias Freidling¹ Qingyuan Zhao¹ Zijun Gao²

¹University of Cambridge

²University of Southern California

Analysing Adaptive Studies



Adaptive Studies

- Characteristics: Recruitment, treatment assignment and null hypothesis can depend on data from previous stages
- Benefits: reacting to external circumstances, more ethical treatment allocation, saving time and money [1]

Data Analysis

- Difficulty: data informs design and null hypothesis → risk of double dipping
- Existing methods: design-specific, strong assumptions
- Our approach: randomization inference → no modelling assumptions or i.i.d. data needed

Selective Randomization P-value

Insight: only use randomness of Z as its distribution is known Testing the null hypothesis

 $Y_i(1) - Y_i(0) = 0$ for all $i \in R$ (or a subset) with the statistic T. $(Z^* \stackrel{D}{=} Z \text{ and } Z^* \perp \!\!\!\perp Z \mid W)$

- Usual randomization p-value^[2]: invalid due to double dipping $P^*(T(Z^*,W) \leq T(Z,W) | Z,W)$
- Data splitting^[3] / 2nd stage randomization p-value: loses power $P^*(T(Z^*,W) \leq T(Z,W) \mid Z,W,Z_1^* = Z_1)$
- Selective randomization p-value: valid & more powerful [4, 5]

 $p(Z) := P^*(T(Z^*, W) \le T(Z, W) \mid Z, W, S(Z_1^*) = S(Z_1))$

Inference and Computation

Inference for a homogeneous treatment effect $\beta = Y_i(1) - Y_i(0)$, where $i \in R$ (or a subset):

- (1α) confidence interval: inversion of tests $\{\beta : p_{\beta}(Z) \ge \alpha\}$
- Estimation: $\widehat{\beta} = \beta$ such that $p_{\beta}(Z) = 0.5$

Computation of p-value via Monte Carlo approximation

$$\frac{\sum_{j=1}^{m} \mathbf{1}\{T(z_{j}^{*}, W) \leq T(Z, W)\} \cdot P^{*}(Z^{*} = z_{j}^{*} \mid W)}{\sum_{i=1}^{m} P^{*}(Z^{*} = z_{i}^{*} \mid W)},$$

where sample $(z_i^*)_{i=1}^m$ is generated via rejection sampling or MCMC

DAG and Notation $X,Y(\cdot)$ Stage 2 Stage 1

- Covariates X and potential outcomes $Y(\cdot)$ of population
- $Y_{R_i} = Y_{R_i}(Z_i)$

Observed outcomes:

- Recruitment: R_1, R_2
- Selective choice: S₁, S₂
- Treatment assignment: Z_1, Z_2 Short-hand: $W = (R, X_R, Y_R(\cdot))$

Simulation Study

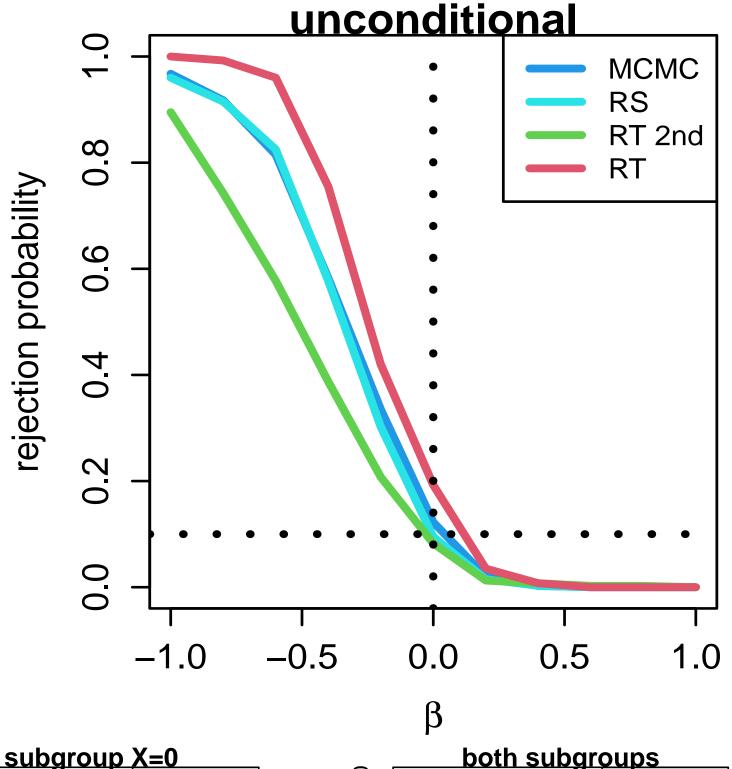
- 2 stages, 2 treatments $Z_i \in \{0, 1\}$, 2 groups $X_i \in \{0, 1\}$
- Potential outcomes: $Y_i(0) = Y_i(1) \sim N(0, 1)$ i.i.d.
- First stage: 50 patients
- Δ = standardized difference in SATEs between groups
- Selection variable and recruitment in second stage:

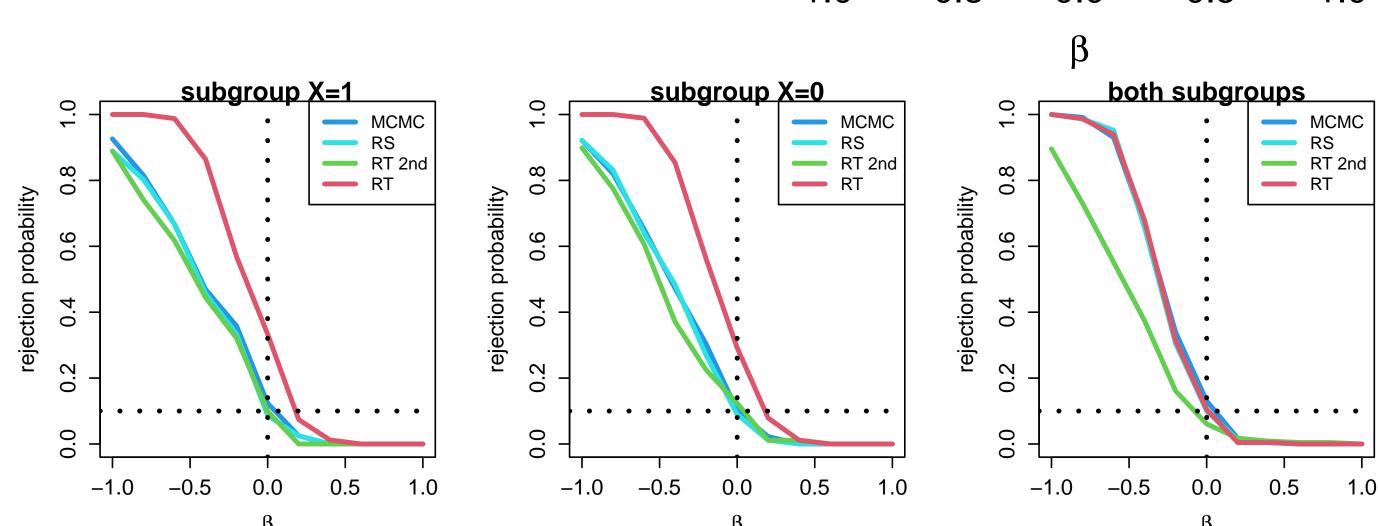
$$S = \begin{cases} 0, & \Delta < \Phi^{-1}(0.2), \\ 1, & \Delta > \Phi^{-1}(0.8), \\ 2, & \text{otherwise,} \end{cases}$$

(0, $\Delta < \Phi^{-1}(0.2)$, recruit 25 from group $X_i = 0$, recruit 25 from group $X_i = 1$, recruit 13/12.

Power analysis:

- Type-I error control overall and in subgroups
- More powerful than data splitting
- Similar approximations for rejection sampling and MCMC





References

- Philip Pallmann, Alun W. Bedding, Babak Choodari-Oskooei, and collab. Adaptive designs in clinical trials: why use them, and how
- to run and report them. BMC Medicine, 16(1):29, 2018. R. A. Fisher. The design of experiments. Oliver & Boyd, Edinburgh, 1935.
- D. R. Cox. A note on data-splitting for the evaluation of significance levels. Biometrika, 62(2):441-444, 1975.
- Yao Zhang and Qingyuan Zhao. What is a Randomization Test? Journal of the American Statistical Association, 0(0):1-15, 2023.
- William Fithian, Dennis Sun, and Jonathan Taylor. Optimal Inference After Model Selection. arXiv: 1410.2597, 2017.