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• Null hypothesis:  for all Yi(1) − Yi(0) = 0 i

• Test statistic: , e.g. average 
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Randomization Inference
• Null hypothesis:  for all Yi(1) − Yi(0) = 0 i

• Test statistic: , e.g. average 
outcome of treated minus control

T(Z, Y( ⋅ ))

• Condition on  and compare observed 
value of statistic  against values 

 under alternative treatment 
assignments .

Y( ⋅ )
T(Z, Y( ⋅ ))

T(Z*, Y( ⋅ ))
Z*

• P-value: 

where  and 

ℙ( T(Z*, Y( ⋅ )) ≤ T(Z, Y( ⋅ )) ∣ Y( ⋅ ), Z),
Z* D= Z Z* ⊥⊥ Z ∣ Y( ⋅ )

Fisher (1935), Pitman (1937), Zhang & Zhao (2023)
4

i Y Y(0) Y(1) Z
1 5 5 1
2 7 7 0
3 -3 -3 0
4 0 0 1
… … … … …

5
7
-3

0



Example

5



Example

5
FOURIER trial: Marston et al. (2020)

High genetic risk

Low genetic risk



Stage 1  

Example

5
FOURIER trial: Marston et al. (2020)

High genetic risk

Low genetic risk



Stage 2  Stage 1  

Example

5
FOURIER trial: Marston et al. (2020)

High genetic risk

Low genetic risk



Stage 2  Stage 1  

Selection

Example

5
FOURIER trial: Marston et al. (2020)

High genetic risk

Low genetic risk



Stage 2  Stage 1  

Null hypothesisSelection

Example

5
FOURIER trial: Marston et al. (2020)

High genetic risk

Low genetic risk



Graphical Model

6



Graphical Model

X, Y( ⋅ )

• Covariates: X

• Potential outcomes: Y( ⋅ )

6



Stage 1  

Graphical Model

Z1

YR1

X, Y( ⋅ )

• Covariates: X

• Potential outcomes: Y( ⋅ )

6

R1

XR1

YR1
( ⋅ )



Stage 1  

Graphical Model

Z1

YR1

X, Y( ⋅ )

• Covariates: X

• Potential outcomes: Y( ⋅ )

• Recruitment: Rk ⊆ [n]

• Treatments: Zk

• Observed outcomes: Y = Y(Z)

6

R1

XR1

YR1
( ⋅ )



Stage 1  

Graphical Model

Z1

YR1

X, Y( ⋅ )

• Covariates: X

• Potential outcomes: Y( ⋅ )

• Recruitment: Rk ⊆ [n]

• Treatments: Zk

• Observed outcomes: Y = Y(Z)

6

R1

XR1

YR1
( ⋅ )

Stage 2  Z2

YR2

R2

XR2

YR2
( ⋅ )



Stage 1  

Graphical Model

Z1

YR1 S1 S2

X, Y( ⋅ )

• Covariates: X

• Potential outcomes: Y( ⋅ )

• Recruitment: Rk ⊆ [n]

• Treatments: Zk

• Observed outcomes: Y = Y(Z)

• Selective choice:                Sk

6

R1

XR1

YR1
( ⋅ )

Stage 2  Z2

YR2

R2

XR2

YR2
( ⋅ )



Stage 1  

Graphical Model

Z1

YR1 S1 S2

X, Y( ⋅ )

• Covariates: X

• Potential outcomes: Y( ⋅ )

• Recruitment: Rk ⊆ [n]

• Treatments: Zk

• Observed outcomes: Y = Y(Z)

• Selective choice:                Sk

• Short-hand:                                                                 W = (R, XR, YR( ⋅ ))
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Adaptive Treatment Strategies
• At every stage , the treatment  is allowed to depend on past treatments, 

covariates and observed outcomes
k Zk

• Different overlapping fields:


• Response-adaptive randomization: trade off statistical power and patient benefit


• Bandit algorithms: exploration and exploitation


• Reinforcement learning

• Analysing data from adaptive experiments despite the dependence between 
different data points

Thompson (1933), Burnett et al. (2020),

Offer-Westort et al. (2021), Kasy et al. (2021) 
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Randomization Inference
• Strength: no modelling assumptions, no i.i.d. data

• Distribution of  is knownZ = (Z1, …, ZK)

• Null hypothesis:  for all/subset of unitsYi(1) − Yi(0) = 0

• Condition on  and compare observed value of statistic  against values 
 under alternative treatment assignments .

W T(Z, W)
T(Z*, W) Z*

• where  and ℙ( T(Z*, W) ≤ T(Z, W) ∣ W, Z), Z* D= Z Z* ⊥⊥ Z ∣ W

• Is there a problem when the experiment is adaptive?

Fisher (1935), Pitman (1937), Zhang & Zhao (2023)
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• Result: Type-I error inflation

• Solutions:

• Data splitting (Cox, 1975):      , where ℙ( T(Z*, W) ≤ T(Z, W) ∣ W, Z, Z*1 = Z1) K = 2

• Selective inference (Lee et al., 2016; Fithian et al., 2017): regression models etc.

• Selective randomization inference:

Psel = ℙ( T(Z*, W) ≤ T(Z, W) ∣ W, Z, S(Z*) = S(Z) )
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Computability and Computation

• Under general assumptions,  can be computed.Psel

• Monte Carlo approximation: Generate  feasible samples , i.e. , 
and compute

M (z*j )M
j=1 S(z*j ) = S(Z)

̂PM :=
1 + ∑M

j=1 1{T(z*j , W) ≤ T(Z, W)}

1 + M
.

• Rejection sampling, Markov Chain Monte Carlo (MCMC)
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Inference

• Confidence intervals:

• test  for different  Yi(1) − Yi(0) = τ τ

•  confidence interval: (1 − α) C1−α = {τ : Psel(τ) ≥ α}

• Estimation:  such that τ Psel(τ) = 0.5
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Simulation Study
• 2 stages, 2 treatments , 2 groups Zi ∈ {0,1} Xi ∈ {low, high}

• Potential outcomes:  i.i.d.Yi(0) = Yi(1) ∼ N(0,1)

• First stage: 100 patients, Second stage: 40 patients

• standardized difference in SATEs between groupsΔ =

• Selection variable:

S =
only low, Δ < Φ−1(0.2), recruit 40 from group Xi = low

only high, Δ > Φ−1(0.8), recruit 40 from group Xi = high
both, otherwise, recruit 20 from each group
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Power Analysis

• RT: no type-I error control

• RT 2nd: valid but has low power
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Power Analysis

• RT: no type-I error control

• RT 2nd: valid but has low power

• Selective RT: valid and more powerful

• Rejection sampling and MCMC lead to 
very similar approximations.
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Power Analysis

• Type-I error control in every subgroup
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Power Analysis

• Type-I error control in every subgroup

• Gain in power when there is a lot of “randomness left”
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Conclusion
• Experiments with adaptive treatments, recruitment and null hypothesis


• Visualization via DAGs


• Key idea: Conditioning randomization p-value on the selection information 

• Computability under general assumptions


• Approximation via rejection sampling or MCMC
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