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• Distribution of  is knownW = (W1, W2)

• Null hypothesis:  for all/subset of unitsYi(1) − Yi(0) = 0

• Condition on  and compare observed value of statistic  
against values  under alternative treatment assignments .

Z = (R, XR, YR( ⋅ )) T(W, Z)
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•  and ℙ*( T(W*, Z) ≤ T(W, Z) ∣ W, Z) W* D= W W* ⊥⊥ W ∣ Z

Fisher (1935), Zhang & Zhao (2023)
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• Strength: no modelling assumptions, no i.i.d. data

• Distribution of  is knownW = (W1, W2)

• Null hypothesis:  for all/subset of unitsYi(1) − Yi(0) = 0

• Condition on  and compare observed value of statistic  
against values  under alternative treatment assignments .

Z = (R, XR, YR( ⋅ )) T(W, Z)
T(W*, Z) W*

•  and ℙ*( T(W*, Z) ≤ T(W, Z) ∣ W, Z) W* D= W W* ⊥⊥ W ∣ Z

• Problem: double dipping

Fisher (1935), Zhang & Zhao (2023)
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• Here: data  model & null hypothesis  inference→ →

• Type-I error inflation: comparing to  that choose different stage-II design than W*1 W1

• Solutions:

• Data splitting (Cox, 1975):      ℙ*( T(W*, Z) ≤ T(W, Z) ∣ W, Z, W*1 = W1)

• Selective inference (Lee et al., 2016; Fithian et al., 2017): regression models etc.

• Selective randomization inference:

pS(W) = ℙ*( T(W*, Z) ≤ T(W, Z) ∣ W, Z, S(W*1 ) = S(W1) )
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Inference

• General framework for  treatments and  stagesL K

• Confidence intervals:

• test  for different  Yi(1) − Yi(0) = β β

•  confidence interval: (1 − α) {β : pβ
S (W) ≥ α}

• Estimation:  such that β pβ
S (W) = 0.5

• Data carving: non-adaptive hold out units

pS(W) = ℙ*( T(W*, Z) ≤ T(W, Z) ∣ W, Z, S(W*) = S(W) )
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Computation

• Monte Carlo approximation: Generate  feasible samples , i.e. 
, and compute

m (w*j )m
j=1

S(w) = S(w*j )

∑m
i=1 1{T(w*j , Z) ≤ T(w, Z)} ℙ*(W* = w* ∣ Z)

∑m
i=1 ℙ*(W* = w* ∣ Z)

• Rejection sampling, Markov Chain Monte Carlo (MCMC)

pS(W) = ℙ*( T(W*, Z) ≤ T(W, Z) ∣ W, Z, S(W*) = S(W) )
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Simulation Study
• 2 stages, 2 treatments , 2 groups Wi ∈ {0,1} Xi ∈ {0,1}

• Potential outcomes:  i.i.d.Yi(0) = Yi(1) ∼ N(0,1)

• First stage: 50 patients

• standardized difference in SATEs between groupsΔ =

• Selection variable:

S =
0, Φ(0.2) ≤ Δ ≤ Φ(0.8), recruit 13/12 in stage II,
1, Δ < Φ(0.2), recruit 25 from group 1 in stage II,
2, Δ > Φ(0.8), recruit 25 from group 2 in stage II .
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Power Analysis

• Standard randomization inference does 
not control type-I error.

• Randomization inference on 2nd stage is 
valid but has low power.
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• Selective randomization inference is 
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Power Analysis

• Standard randomization inference does 
not control type-I error.

• Randomization inference on 2nd stage is 
valid but has low power.

• Selective randomization inference is 
valid and more powerful.

• Rejection sampling and MCMC lead to 
very similar approximations.
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Power Analysis

• Type-I error control in every subgroup
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Power Analysis

• Type-I error control in every subgroup

• Gain in power when there is a lot of “randomness left”
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Thanks for your attention!

taf40@cam.ac.uk
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