Selective Randomization Inference
for Adaptive Clinical Studies
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« Strength: no modelling assumptions, no i.i.d. data
» Distribution of W = (W,, W,) is known
» Null hypothesis: Y.(1) — Y,(0) = O for all/subset of units

» Condition on Z = (R, Xj, Yz( - )) and compare observed value of statistic 7(W, Z)
against values T(W*, Z) under alternative treatment assignments W*.

« PH(T(W*,Z)<TW.2) | W.Z) W*2Z Wand W* 1L W | Z
* Problem: double dipping

Fisher (1935), Zhang & Zhao (2023)
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 Here: data — model & null hypothesis — inference

. Type-l error inflation: comparing to W* that choose different stage-Il design than W
1 |

o Solutions:

. Data splitting (Cox, 1975): P*( T(W*,2) <TW,Z) | W, Z, W;k = W,)

» Selective inference (Lee et al., 2016; Fithian et al., 2017): regression models etc.

o Selective randomization inference:
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Inference

« General framework for L treatments and K stages

» Confidence intervals:

e test Y(1) — Y,(0) = p for different

« (1 — a) confidence interval: {3 pg(W) > o}
. Estimation: f such that pg(W) = 0.5

* Data carving: non-adaptive hold out units
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Computation

. Monte Carlo approximation: Generate m feasible samples (w]?k);”= [ 1.e.

S(w) = S(wj?k), and compute

> HTWw#, 2) < Tw,Z)} P*(W* = w* | Z)

z:’il_ *(W* = w* | Z)

* Rejection sampling, Markov Chain Monte Carlo (MCMC)
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Simulation Study

. 2 stages, 2 treatments W, € {0,1}, 2 groups X. € {0,1}
» Potential outcomes: Y,(0) = Y;(1) ~ N(O,1) i.i.d.
* First stage: 50 patients

- A = standardized difference in SATEs between groups

 Selection variable:

0, D(0.2) < A < D(0.3), recruit 13/12 in stage |I,
S=<1, A < D(0.2), recruit 25 from group 1 in stage II,
2, A > ©(0.3), recruit 25 from group 2 in stage Il .
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Power Analysis

rejection probability

1.0

0.8

unconditional
. e MCMC

RS

. RT 2nd
o oD RT

Standard randomization inference does
not control type-| error.

Randomization inference on 2nd stage is
valid but has low power.

Selective randomization inference is
valid and more powerful.

Rejection sampling and MCMC lead to
very similar approximations.
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e Type-| error control in every subgroup

* Gain in power when there is a lot of “randomness left”
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Thanks for your attention!

taf40dcam.ac.uk
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