## Selective Randomization Inference for Adaptive Clinical Studies

Tobias Freidling, Qingyuan Zhao, Zijun Gao

**Response-Adaptive Randomisation in Clinical Trials Workshop 29/02/2024** 



















#### **Graphical Model**

### **Graphical Model**



- Covariates: *X*
- Potential outcomes:  $Y(\cdot)$



- Covariates: *X*
- Potential outcomes:  $Y(\cdot)$
- Recruitment:  $R_1, R_2$



- Covariates: X
- Potential outcomes:  $Y(\cdot)$
- Recruitment:  $R_1, R_2$
- Treatments:  $W_1, W_2$
- Observed outcomes: Y = Y(W)





- Covariates: X
- Potential outcomes:  $Y(\cdot)$
- Recruitment:  $R_1, R_2$
- Treatments:  $W_1, W_2$
- Observed outcomes: Y = Y(W)
- Selective choice:  $S_1, S_2$





- Covariates: X
- Potential outcomes:  $Y(\cdot)$
- Recruitment:  $R_1, R_2$
- Treatments:  $W_1, W_2$
- Observed outcomes: Y = Y(W)
- Selective choice:  $S_1, S_2$





- Covariates: X
- Potential outcomes:  $Y(\cdot)$
- Recruitment:  $R_1, R_2$
- Treatments:  $W_1, W_2$
- Observed outcomes: Y = Y(W)
- Selective choice:  $S_1, S_2$





- Covariates: X
- Potential outcomes:  $Y(\cdot)$
- Recruitment:  $R_1, R_2$
- Treatments:  $W_1, W_2$
- Observed outcomes: Y = Y(W)
- Selective choice:  $S_1, S_2$





- Strength: no modelling assumptions, no i.i.d. data
- Distribution of  $W = (W_1, W_2)$  is known

- Strength: no modelling assumptions, no i.i.d. data
- Distribution of  $W = (W_1, W_2)$  is known
- Null hypothesis:  $Y_i(1) Y_i(0) = 0$  for all/subset of units

- Strength: no modelling assumptions, no i.i.d. data
- Distribution of  $W = (W_1, W_2)$  is known
- Null hypothesis:  $Y_i(1) Y_i(0) = 0$  for all/subset of units
- Condition on  $Z = (R, X_R, Y_R(\cdot))$  and compare observed value of statistic T(W, Z)against values  $T(W^*, Z)$  under alternative treatment assignments  $W^*$ .
- $\mathbb{P}^*(T(W^*, Z) \le T(W, Z) \mid W, Z)$

$$W^* \stackrel{D}{=} W$$
 and  $W^* \perp W \mid Z$ 

Fisher (1935), Zhang & Zhao (2023)



- Strength: no modelling assumptions, no i.i.d. data
- Distribution of  $W = (W_1, W_2)$  is known
- Null hypothesis:  $Y_i(1) Y_i(0) = 0$  for all/subset of units
- Condition on  $Z = (R, X_R, Y_R(\cdot))$  and compare observed value of statistic T(W, Z)against values  $T(W^*, Z)$  under alternative treatment assignments  $W^*$ .
- $\mathbb{P}^*(T(W^*, Z) \le T(W, Z) \mid W, Z)$
- Problem: double dipping

$$W^* \stackrel{D}{=} W$$
 and  $W^* \perp W \mid Z$ 

Fisher (1935), Zhang & Zhao (2023)



- Traditional statistics: model & null hypothesis  $\rightarrow$  data  $\rightarrow$  inference
- Here: data  $\rightarrow$  model & null hypothesis  $\rightarrow$  inference

- Traditional statistics: model & null hypothesis  $\rightarrow$  data  $\rightarrow$  inference
- Here: data  $\rightarrow$  model & null hypothesis  $\rightarrow$  inference
- Type-I error inflation: comparing to  $W_1^st$  that choose different stage-II design than  $W_1$

- Traditional statistics: model & null hypothesis  $\rightarrow$  data  $\rightarrow$  inference
- Here: data  $\rightarrow$  model & null hypothesis  $\rightarrow$  inference
- Type-I error inflation: comparing to  $W_1^*$  that choose different stage-II design than  $W_1$
- Solutions:

#### • Data splitting (Cox, 1975): $\mathbb{P}^*(T(W^*, Z) \le T(W, Z) \mid W, Z, W_1^* = W_1)$

- Traditional statistics: model & null hypothesis  $\rightarrow$  data  $\rightarrow$  inference
- Here: data  $\rightarrow$  model & null hypothesis  $\rightarrow$  inference
- Type-I error inflation: comparing to  $W_1^*$  that choose different stage-II design than  $W_1$
- Solutions:

#### • Data splitting (Cox, 1975): $\mathbb{P}^*(T(W^*, Z) \le T(W, Z) \mid W, Z, W_1^* = W_1)$

Selective inference (Lee et al., 2016; Fithian et al., 2017): regression models etc.

- Traditional statistics: model & null hypothesis  $\rightarrow$  data  $\rightarrow$  inference
- Here: data  $\rightarrow$  model & null hypothesis  $\rightarrow$  inference
- Type-I error inflation: comparing to  $W_1^*$  that choose different stage-II design than  $W_1$
- Solutions:
  - $\mathbb{P}^*(T)$ • Data splitting (Cox, 1975):

  - Selective randomization inference:

$$p_{S}(W) = \mathbb{P}^{*}(T(W^{*}, Z) \leq T(W, Z) \mid W, Z, S(W_{1}^{*}) = S(W_{1}))$$

$$(W^*, Z) \le T(W, Z) \mid W, Z, W_1^* = W_1)$$

Selective inference (Lee et al., 2016; Fithian et al., 2017): regression models etc.

#### $p_S(W) = \mathbb{P}^*(T(W^*, Z) \le T(W, Z) \mid W, Z, S(W^*) = S(W))$

General framework for *L* treatments and *K* stages 

#### $p_S(W) = \mathbb{P}^*(T(W^*, Z) \le T(W, Z) \mid W, Z, S(W^*) = S(W))$

- General framework for L treatments and K stages
- Confidence intervals:
  - test  $Y_i(1) Y_i(0) = \beta$  for different  $\beta$
  - $(1 \alpha)$  confidence interval:  $\{\beta : p_S^{\beta}(W) \ge \alpha\}$

#### $p_S(W) = \mathbb{P}^*(T(W^*, Z) \le T(W, Z) \mid W, Z, S(W^*) = S(W))$

$$p_S(W) = \mathbb{P}^*(\ T(W^*, Z) \leq$$

- General framework for L treatments and K stages
- Confidence intervals:
  - test  $Y_i(1) Y_i(0) = \beta$  for different  $\beta$
  - $(1 \alpha)$  confidence interval:  $\{\beta : p_S^{\beta}(W) \ge \alpha\}$
- Estimation:  $\beta$  such that  $p_{s}^{\beta}(W) = 0.5$

#### $T(W, Z) \mid W, Z, S(W^*) = S(W))$

$$p_S(W) = \mathbb{P}^*(\ T(W^*, Z) \leq$$

- General framework for L treatments and K stages
- Confidence intervals:
  - test  $Y_i(1) Y_i(0) = \beta$  for different  $\beta$
  - $(1 \alpha)$  confidence interval:  $\{\beta : p_{S}^{\beta}(W) \ge \alpha\}$
- Estimation:  $\beta$  such that  $p_{c}^{\beta}(W) = 0.5$
- Data carving: non-adaptive hold out units

#### $T(W, Z) \mid W, Z, S(W^*) = S(W))$

6

#### Computation

### $p_{S}(W) = \mathbb{P}^{*}(T(W^{*}, Z) \leq T(W, Z) \mid W, Z, S(W^{*}) = S(W))$

#### Computation

$$p_S(W) = \mathbb{P}^*(T(W^*, Z) \leq$$

• Monte Carlo approximation: Generate *m* feasible samples  $(w_i^*)_{i=1}^m$ , i.e.  $S(w) = S(w_i^*)$ , and compute

$$\sum_{i=1}^{m} \mathbf{1}\{T(w_j^*, Z) \le T(w, Z)\} \mathbb{P}^*(W^* = w^* \mid Z)$$

#### $T(W, Z) \mid W, Z, S(W^*) = S(W))$

 $\sum_{i=1}^{m} \mathbb{P}^{*}(W^{*} = w^{*} \mid Z)$ 

#### Computation

$$p_S(W) = \mathbb{P}^*(\ T(W^*, Z) \leq$$

Monte Carlo approximation: Generate *m* feasible samples  $(w_i^*)_{i=1}^m$ , i.e.  $S(w) = S(w_i^*)$ , and compute

$$\sum_{i=1}^{m} \mathbf{1}\{T(w_j^*, Z) \le T(w, Z)\} \mathbb{P}^*(W^* = w^* \mid Z)$$

 $\sum_{i=1}^{m} \mathbb{P}^{*}(W^{*} = w^{*} \mid Z)$ 

Rejection sampling, Markov Chain Monte Carlo (MCMC) 

#### $T(W, Z) \mid W, Z, S(W^*) = S(W))$

- 2 stages, 2 treatments  $W_i \in \{0,1\}$ , 2 groups  $X_i \in \{0,1\}$
- Potential outcomes:  $Y_i(0) = Y_i(1) \sim N(0,1)$  i.i.d.
- First stage: 50 patients

8

- 2 stages, 2 treatments  $W_i \in \{0,1\}$ , 2 groups  $X_i \in \{0,1\}$
- Potential outcomes:  $Y_i(0) = Y_i(1) \sim N(0,1)$  i.i.d.
- First stage: 50 patients
- $\Delta = \text{standardized difference in SATEs between groups}$

- 2 stages, 2 treatments  $W_i \in \{0,1\}$ , 2 groups  $X_i \in \{0,1\}$
- Potential outcomes:  $Y_i(0) = Y_i(1) \sim N(0,1)$  i.i.d.
- First stage: 50 patients
- $\Delta =$  standardized difference in SATEs between groups
- Selection variable:

$$S = \begin{cases} 0, & \Phi(0.2) \le \Delta \le \Phi(0.8), \\ 1, & \Delta < \Phi(0.2), \\ 2, & \Delta > \Phi(0.8), \end{cases}$$

recruit 13/12 in stage II, recruit 25 from group 1 in stage II, recruit 25 from group 2 in stage II.





# rejection probability









## Standard randomization inference does not control type - l error. RT 2nd RT Randomization inference on 2nd stage is valid but has low power.

Selective randomization inference is valid and more powerful.





- Standard randomization inference does MCMC not control type + error. RT 2nd RT
   Randomization inference on End stage is valid but has low power.
- Selective randomization inference is valid and more powerful.
- Rejection compling and MCMC lead to ...
  very similar approximations.







• Type-I error control in every subgroup



- Type-I error control in every subgroup
- Gain in power when there is a lot of "randomness left"

## Thanks for your attention!

#### taf40@cam.ac.uk



#### References

Cox, D.R. (1975) 'A note on data-splitting for the evaluation of significance levels', Biometrika, 62(2), pp. 441–444.

Fisher, R. A. (1935). 'The design of experiments', Edinburgh: Oliver & Boyd.

Fithian, W., Sun, D. and Taylor, J. (2017) 'Optimal Inference After Model Selection', arXiv:1410.2597

Lee, J.D., Sun, D.L., Sun, Y., Taylor J. (2016) 'Exact post-selection inference, with application to the lasso', The Annals of Statistics, 44(3).

Zhang, Y. and Zhao, Q. (2023) 'What is a Randomization Test?', Journal of the American Statistical Association, 0(0), pp. 1–15.