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i Y | YO0 | Y1) | Z
1] 5 5 1
2| 7 7 0
3| -3 | -3 0
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» Null hypothesis: Y.(1) — Y.(0) = 0 for all i

 Test statistic: 7(Z, Y( - )), e.g. average
outcome of treated minus control
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Randomization Inference

» Null hypothesis: Y.(1) — Y.(0) = 0 for all i

. Test statistic: T(Z, Y( : )), e.g. average il Y | Y0 | Y1) y
outcome of treated minus control
1 S 5 5 1
 Condition on Y( - ) and compare observed 2| [ / / 0
value of statistic 7(Z, Y( - )) against values 3] 3 | -3 -3 0
T(Z*, Y( -)) under alternative treatment 41 0 0 0 1
assignments Z*.

* P-value:
P(T(Z*,Y(-)) ST(Z, Y(-)) | Y(-),2),
where Z*QZandZ*iLZ\Y(-)

Fisher (1935), Pitman (1937), Zhang & Zhao (2023)
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e Covariates: X

Graphical Model

 Potential outcomes: Y( - )
e Recruitment: R, C [n]
 Treatments: Z,

* Observed outcomes: Y = Y(Z/)

- Selective choice:

» Short-hand: W = (R, Xp, YR( +))
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. Assumption (A1): Zi L Yp () | Rygy X s YR 5 211 Vk € [K]
 Assumption (A2): Ry, X, Yo (-) AL Zj iy | Wiy Sk Vk e [K]

. Assumption (A1*): Ze L 70 Wi Yp ) | Rip X s Sim1 - Vk € [K]
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Adaptive Treatment Strategies

. Assumption (A1): Z AL Yp () | Ry X o Y0 Zi1 Vk € [K]

4]

« Different overlapping fields:
 Response-adaptive randomization: trade off statistical power and patient benefit
« Bandit algorithms: exploration and exploitation
* Reinforcement learning

e Analysing data from adaptive experiments despite the dependence between different
data points

Thompson (1933), Burnett et al. (2020),
Offer-Westort et al. (2021), Kasy et al. (2021)
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Randomization Inference

« Strength: no modelling assumptions, no i.i.d. data
» Distribution of Z = (24, ..., Zg) is known
» Null hypothesis: Y.(1) — Y,(0) = O for all/subset of units

» Condition on W and compare observed value of statistic 7(Z, W) against values
T(Z*, W) under alternative treatment assignments Z*.

« P(T(Z*, W)L TZ,W)|W,Z), where Z% 2 Zand Z* 1L Z| W

* |s there a problem when the experiment is adaptive?

Fisher (1935), Pitman (1937), Zhang & Zhao (2023)
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Selective Randomization Inference

» Using data twice (double dipping)

» Comparing to Z* that choose different stage-Il design or null hypothesis than Z
* Result: Type-I| error inflation

e Solutions:

. Data splitting (Cox, 1975): [P(T(Z*, W) <T(Z, W) | W, Z, Z;k = /), where K = 2

* Selective inference (Lee et al., 2016; Fithian et al., 2017): regression models etc.

e Selective randomization inference:
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Computability

* Under Assumptions (A1) and (A2), the selective randomization p-value can be
computed.

 Formula for the selective randomization distribution under (A1%):

« PZ=z|W=w,5Z)=5) = M,where

2.q9@ [ w,s)

K
- q(z|w,s) = 1{S(z) = s} - Hl (Z = 5 | Ry = 17 X, = Xg» St = Sj—1)
k=1

Y. YT W) <T(Z,W)} q(z* | W,S(2))
> q(z* | W,8(2))
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. Monte Carlo approximation: Generate M feasible samples (z]?k)jj‘il, .e. S(zj*) = S5(2),
and compute
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Computation

. Monte Carlo approximation: Generate M feasible samples (z]?k)jj‘il, .e. S(zj*) = S5(2),
and compute

L+ X7 1{T@F W) < T(Z, W)}
1+ M

* Rejection sampling, Markov Chain Monte Carlo (MCMC)

12
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» Confidence intervals:
» test Y;(1) — Y;(0) = 7 for different 7
+ (I — a) confidence interval: C,_, = {7: P,,(7) > a}

» Estimation: 7 such that P, () = 0.5
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Inference

» Confidence intervals:

» test Y;(1) — Y;(0) = 7 for different 7

(I — a) confidence interval: C,_, = {7: P, /(1) > a}
» Estimation: 7 such that P, () = 0.5

 Data carving: non-adaptive hold-out units

13
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Simulation Study

. 2 stages, 2 treatments Z. € {0,1}, 2 groups X; € {low, high}
» Potential outcomes: Y,(0) = Y;(1) ~ N(O,1) i.i.d.

* First stage: 100 patients, Second stage: 40 patients

- A = standardized difference in SATEs between groups

 Selection variable:

only low, A < ©71(0.2), recruit 40 from group X; = low

5= 9 onlyhigh, A >®1(0.8), recruit 40 from group X; = high
both, otherwise, recruit 20 from each group

14
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Power Analysis

rejection probability

1.0

0.8

unconditional

e MCMC

. RS
. RT 2nd

15

RT: no type-l error control
RT 2nd: valid but has low power
Selective RT: valid and more powerful.

Rejection sampling and MCMC lead to
very similar approximations.
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Power Analysis
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e Type-| error control in every subgroup
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Power Analysis

subgroup X=high subgroup X=low

1.0
1.0

rejection probability
rejection probability

e Type-| error control in every subgroup

* Gain in power when there is a lot of “randomness left”

16
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Conclusion

* EXxperiments with adaptive treatments, recruitment and null hypothesis

* Visualization via DAGs

e Key idea: Conditioning randomization p-value on the selection information
« Computability under general assumptions

* Approximation via rejection sampling or MCMC

17
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