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Does education make you rich?
• Causal question      Linear causal effect → β

• Data-generating process follows the DAG

• Obstacle: unmeasured variables U

• If  was observed, fit regression model
 and get the regression 

coefficient of : 

U
Y ∼ D + X + Z + U

D

 β = βY∼D|X,Z,U
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Sensitivity Analysis as an Optimization Problem
• Optimization problem:

ν(θ) = min/max β(θ, ψ) subject to ψ ∈ Ψ(θ)

• A new idea?

• Rosenbaum (1987)

• Balke & Pearl (1994, 1997)

• Ding & VanderWeele (2016)

• Etc.

• Our contribution: Take the optimization perspective seriously

                     → solve numerically instead of analytically
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Estimating the PIR & Sensitivity Intervals
• Plug-in Optimization problem:

ν( ̂θ) = min/max β( ̂θ, ψ) subject to ψ ∈ Ψ( ̂θ)

•  Sensitivity Interval:  confidence interval for the PIR(1−α) (1−α)
• Bootstrap approach:

• Create bootstrap samples  Compute bootstrap estimators  → ̂̂θ

• Solve the optimization problems ν( ̂ ̂θ)
• Compute the quantiles via percentile, basic or BCa bootstrap
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β = βY∼D|X,Z − RY∼U|X,Z,D fD∼U|X,Z
sd(Y⊥X,Z,D)
sd(D⊥X,Z)

• Estimable parameters : , , , etc.θ βY∼D|X,Z sd(Y⊥X,Z,D) sd(D⊥X,Z)

• Sensitivity parameters :  and ψ RY∼U|X,Z,D RD∼U|X,Z

• What about TSLS-sensitivity parameters?

fY∼Z|X,U,D 1−R2
Y∼U|X,Z,D = fY∼Z|X,D 1 − R2

Z∼U|X,D − RY∼U|X,Z,D RZ∼U|X,D

fZ∼U|X,D 1−R2
D∼U|X,Z = fZ∼U|X 1 − R2

D∼Z|X − RD∼Z|X RD∼U|X,Z
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Bounds on the Sensitivity Parameters
Direct Bounds
• Directly specify range of values, e.g.

RD∼U|X,Z ∈ [−0.5,0.5]

Comparative Bounds

• Assumption:  such that X = ( ·X, X̃) R2
U∼ ·X|X̃,Z = 0

R2
Y∼U|X̃, ·X−j,Z

≤ 2 R2
Y∼ ·Xj|X̃, ·X−j,Z

• Meaning: The unmeasured confounder  can explain at most twice as much variation 
in  as  does — after regressing out the linear effects of .

U
Y ·Xj (X̃, ·X−j, Z)
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Computation
• Properties of optimization problem: monotone objective, non-convex constraints, 

low-dimensional

• Proposal: Tailored grid-search algorithm


• Key idea: using monotonicity to reduce dimensionality


• Only OLS constraints: ; Any constraints:       𝒪(N) 𝒪(N3) N = #grid points
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Effect of Education on Income
In this vignette we use the optsens package to conduct sensitivity analysis for a regression and instrumental
variable (IV) model that estimates the linear causal effect of education on income. This package is based on
Freidling and Zhao (2025).

The NLSYM Data

The National Longitudinal Survey of Young Men (NLSYM) was initiated in the United States in 1966 and
contains a sample of 3010 young men between the ages of 14 and 24 who were followed up until 1981. This
data set was compiled and analysed by Card (1993) who used it to investigated the causal effect of education
on log-income. The data is available in the R-package ivmodel. We load the data and select the variables that
we use in the analysis below.

lwage educ nearc4 exper expersq black south smsa

6.306 7 0 16 256 1 0 1

6.176 12 0 9 81 0 0 1

library(ivmodel)

data(card.data)
data <- card.data[,c("lwage", "educ", "nearc4",
                     "exper", "expersq", "black", "south", "smsa")]
knitr::kable(head(data))

12/06/2025, 02:24 Effect of Education on Income

127.0.0.1:25739/library/optsens/doc/education-income.html 1/26

https://cran.r-project.org/web/packages/ivmodel/index.html


lwage educ nearc4 exper expersq black south smsa

6.581 12 0 16 256 0 0 1

5.521 11 1 10 100 0 0 1

6.592 12 1 16 256 0 0 1

6.215 12 1 8 64 0 0 1

Description of the variables:

lwage: log-transformed income

educ: education measured in years of schooling

nearc4: indicator for the presence of a 4-year college in the local labour market

exper: potential experience (age - education - 6)

expersq: quadratic transformation of exper

black: indicator for being black

south: indicator for living in the southern United States

smsa: indicator for living in a standard metropolitan statistical area

Regression and IV Estimates

To begin with, we examine two standard approaches of estimating the linear causal effect of education on
income: the ordinary least squares (OLS) estimator stemming from a regression model and the two stage least
squares (TSLS) estimator stemming from an IV model.

For the regression model, we use the lm function.

12/06/2025, 02:24 Effect of Education on Income

127.0.0.1:25739/library/optsens/doc/education-income.html 2/26



For the IV model, we use the ivmodel and KClass functions from the ivmodel package that we have loaded
above.

reg.mod <- lm(lwage ~ educ + nearc4 + exper + expersq + black + south + smsa,
              data = data)

print(coef(reg.mod)["educ"])
#>    educ 
#> 0.07368
print(confint(reg.mod, level = 0.95)["educ",])
#>   2.5 %  97.5 % 
#> 0.06679 0.08058

y <- data[, "lwage"]
d <- data[, "educ"]
z <- data[, "nearc4"]
x <- data[, c("exper", "expersq", "black", "south", "smsa")]

iv.mod <- ivmodel(Y = y, D = d, X = x, Z = z,
                  intercept = TRUE, alpha = 0.05, k = 1)
kclass <- KClass(iv.mod, k = 1, alpha = 0.05)
print(kclass$point.est)
#>   Estimate
#> 1   0.1323
print(kclass$ci)
#>     2.5 % 97.5 %
#> 1 0.03575 0.2288

12/06/2025, 02:24 Effect of Education on Income

127.0.0.1:25739/library/optsens/doc/education-income.html 3/26



We see that the two estimates are quite different despite trying to estimate the same quantity. Moreover, the
regression model yields a very narrow 95% confidence interval whereas the IV model provides a comparatively
wide one.

Indeed, one needs to be careful under which conditions the OLS and TSLS estimates actually warrant a causal
interpretation.

First, we need to make some assumptions on the “order” of variables in the data-generating mechanism. (This
is important for choosing the right adjustment set, for instance.) For the NLSYM data, we assume that the
variables accord to the directed acyclic graph (DAG) below. This is plausible as the variables are measured in
different years which naturally imposes a temporal order.

Second, we require assumptions on variables that are not observed and therefore not part of the data set. Note
that we develop our methodology for one unmeasured confounder  but one can also think about  as a𝑈 𝑈

12/06/2025, 02:24 Effect of Education on Income

127.0.0.1:25739/library/optsens/doc/education-income.html 4/26



“super-confounder” that combines the influence of multiple unmeasured variables. The OLS estimator is
unbiased when one of the following two conditions holds

where  denotes the partial correlation of  and  given . In the graph, this corresponds to the
absence of at least one of the edges 1 and 2. The TSLS estimator is unbiased when the following three
conditions hold

The first condition corresponds to the existence of the edge , whereas the latter two correspond to the
absence of the edges 3 and 4, respectively.

As Card (1993) pointed out, it is likely that there are important unmeasured variables  that render the
identification assumptions for the OLS and TSLS estimators above invalid. Hence, we recommend to conduct
sensitivity analysis that specifies a range of plausible values for the sensitivity parameters

 and , instead of overly optimistically assuming that they are
equal to 0.

Partially Identified Range and Sensitivity Intervals

To conduct sensitivity analysis for the OLS and TSLS estimator, we first load the optsens package. Then, we
generate a sensitivity analysis object sa with the NLSYM data. (The parameters indep_x and dep_x describe two
disjoint subsets of the covariates. This is explained in the subsection on comparative bounds in more detail.)
Then, we print the newly created sensitivity object to inspect it.

= 0, = 0,𝑅𝐷∼𝑈|𝑋,𝑍 𝑅𝑌∼𝑈|𝑋,𝑍,𝐷

𝑅𝐴∼𝐵|𝐶 𝐴 𝐵 𝐶

≠ 0, = 0, = 0.𝑅𝐷∼𝑍|𝑋 𝑅𝑍∼𝑈|𝑋 𝑅𝑌∼𝑍|𝑋,𝑈,𝐷

𝑍 → 𝐷

𝑈

, ,𝑅𝐷∼𝑈|𝑋,𝑍 𝑅𝑌∼𝑈|𝑋,𝑍,𝐷 𝑅𝑍∼𝑈|𝑋 𝑅𝑌∼𝑍|𝑋,𝑈,𝐷

library(optsens)
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We see that sa contains the OLS and TSLS estimator along with their 95% confidence intervals. These agree
with the outputs of lm and ivmodel. Moreover, sa administers a (currently empty) data frame containing bounds
on the sensitivity parameters.

In the following two subsections, we describe how to add different types of bounds and compute the partially
identified range as well as sensitivity intervals. For ease of exposition, we assume that the unmeasured
confounder  is the intrinsic motivation of a person but one may think of various other unmeasured variables
and conduct sensitivity analysis for them in a similar way.

sa <- sensana(y = y, d = d, indep_x = c("black", "south"),
              dep_x = c("exper", "expersq", "smsa"),
              quantile = "t", x = x, z = z, alpha = 0.05)

print(sa, digits = 5)
#> Sensitivity Analysis:
#> 
#> Dependent Covariates:  exper expersq smsa 
#> Independent Covariates:  black south 
#> 
#> Estimators:
#> OLS   0.07368 
#> TSLS  0.1323 
#> 
#> 95% Confidence Intervals:
#> OLS  [ 0.06679 , 0.08058 ]
#> TSLS [ 0.03575 , 0.2288 ]
#> 
#> Specified Bounds:
#> [1] arrow kind  lb    ub    b     I     J    
#> <0 rows> (or 0-length row.names)

𝑈
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Direct Bounds

The most straightforward way of specifying a sensitivity model is putting direct bounds on the sensitivity
parameters. For instance, we may impose

The first constraint expresses the belief that the partial correlation of education and motivation given the
covariates and the instrument lies in between -0.2 and 0.5. Since a positive dependence between education
and motivation seems more plausible, the interval gives more leeway in the positive direction. We may apply a
similar reasoning for the partial correlation between income and motivation and the second bound. We can add
these constraints to sa as follows.

We see that the bounds were indeed successfully added and given the names b1 and b2. (The names can also
be customized in the add_bound function.)

∈ [−0.2, 0.5], ∈ [−0.2, 0.4].𝑅𝐷∼𝑈|𝑋,𝑍 𝑅𝑌∼𝑈|𝑋,𝑍,𝐷

sa <- add_bound(sa, arrow = "UD", kind = "direct", lb = -0.2, ub = 0.5)
sa <- add_bound(sa, arrow = "UY", kind = "direct", lb = -0.2, ub = 0.4)

print(sa)
#> Sensitivity Analysis:
#> 
#> Dependent Covariates:  exper expersq smsa 
#> Independent Covariates:  black south 
#> 
#> Estimators:
#> OLS   0.074 
#> TSLS  0.132 
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Subject to the specified bounds, the linear causal effect of education on income is not point identified anymore.
This means that we can only estimate a (partially identified) range of values instead of a single number. The
optsens package uses a grid search algorithm to this end. (We recommend to use at least 100 grid points per
dimension.)

The partially identified range (PIR) that we obtain of course contains the OLS estimate but does not contain 0.
Hence, we can conclude that the estimate of the causal effect is still positive even if unmeasured confounding
occurs that is no larger than the specified bounds.

The PIR, however, does not account for sampling variability. Therefore, we also want to construct a confidence
interval for the PIR which we call a sensitivity interval. To this end, we use a bootstrap approach which is
implemented in the sensint function.

#> 
#> 95% Confidence Intervals:
#> OLS  [ 0.067 , 0.081 ]
#> TSLS [ 0.036 , 0.229 ]
#> 
#> Specified Bounds:
#>    arrow   kind   lb  ub  b    I    J
#> b1    UD direct -0.2 0.5 NA NULL NULL
#> b2    UY direct -0.2 0.4 NA NULL NULL

grid_specs <- list(N1 = 200, N2 = 200, N5 = 200)
pir1 <- pir(sa, grid_specs = grid_specs)

print(pir1)
#> [1] 0.02920 0.09593
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The resulting data frame contains the lower and upper ends (sl and su) of the sensitivity interval for different
bootstrap procedures (percent, basic and bca). We recommend to mostly use the BCa method as it corrects for
bias and skewness in the bootstrap distribution. Note that bca requires at least as many bootstrap samples
boot_samples as there are data points in the data set. The last column conservative is only relevant when
comparative bounds are specified; see the following subsection. In general, we recommend to use the
conservative sensitivity interval.

We notice that the 95% sensitivity interval does not contain 0. Hence, we can conclude that even in the
presence of the specified unmeasured confounding a positive effect of education on income is significant.

Beyond bounds on  and , we can also put bounds on the TSLS sensitivity parameters.

Note that bounds on  and  alone are generally not sufficient to get a finite PIR. Hence, we
recommend to specify at least one other bound when doing sensitivity analysis for the TSLS assumptions.

sensint1 <- sensint(sa, alpha = 0.05, boot_samples = 3500,
                    grid_specs = grid_specs)
print(sensint1)
#> 95% Sensitivity Intervals:
#>        sl     su bootstrap conservative
#> 1 0.02162 0.1034   percent        FALSE
#> 2 0.02162 0.1034   percent         TRUE
#> 3 0.02151 0.1033     basic        FALSE
#> 4 0.02151 0.1033     basic         TRUE
#> 5 0.02162 0.1036       bca        FALSE
#> 6 0.02162 0.1036       bca         TRUE

𝑅𝐷∼𝑈|𝑋,𝑍 𝑅𝑌∼𝑈|𝑋,𝑍,𝐷

sa <- add_bound(sa, arrow = "ZU", kind = "direct", lb = -0.3, ub = 0.3)
sa <- add_bound(sa, arrow = "ZY", kind = "direct", lb = -0.1, ub = 0.1)

𝑅𝑍∼𝑈|𝑋 𝑅𝑌∼𝑍|𝑋,𝑈,𝐷
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We compute the PIR and sensitivity interval of the updated sensitivity model as follows.

Interestingly, pir1 and pir2 are identical and sensint1 and sensint2 are almost the same. This indicates that
the two new constraints did not contribute to the sensitivity model. This is a first sign that even small violations
of the TSLS assumptions may lead to large deviations from the estimate.

To investigate this further, we remove the previous bounds on  and , put a very loose bound on
 and recompute the PIR and sensitivity interval.

pir2 <- pir(sa, grid_specs = grid_specs)
print(pir2)
#> [1] 0.02920 0.09593

sensint2 <- sensint(sa, alpha = 0.05, boot_samples = 3500,
                    grid_specs = grid_specs)
print(sensint2)
#> 95% Sensitivity Intervals:
#>        sl     su bootstrap conservative
#> 1 0.02149 0.1033   percent        FALSE
#> 2 0.02149 0.1033   percent         TRUE
#> 3 0.02158 0.1035     basic        FALSE
#> 4 0.02158 0.1035     basic         TRUE
#> 5 0.02172 0.1035       bca        FALSE
#> 6 0.02172 0.1035       bca         TRUE

𝑈 → 𝐷 𝑈 → 𝑌
𝑈 → 𝐷

sa <- remove_bound(sa, "b1")
sa <- remove_bound(sa, "b2")
sa <- add_bound(sa, arrow = "UD", kind = "direct", lb = -0.9, ub = 0.9)
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Both the PIR and the sensitivity interval are quite large compared to the expected effect size. This shows that
even moderately small deviations from the TSLS identification assumptions can lead to vastly different
estimates and statistical conclusions. Therefore, the regression approach seems a lot more robust towards
unmeasured confounding than the IV approach for the NLSYM data.

In many cases, it may be hard to confidently specify a plausible range of values for the sensitivity parameters.
Therefore, we introduce bounds that compare  with an observed covariate in the next subsection.

Comparative Bounds

First, we remove the previously specified bounds. This is purely for ease of exposition, however.

pir3 <- pir(sa, grid_specs = grid_specs)
print(pir3)
#> [1] -0.3236  0.4710

sensint3 <- sensint(sa, alpha = 0.05, boot_samples = 3500,
                    grid_specs = grid_specs)
print(sensint3)
#> 95% Sensitivity Intervals:
#>        sl     su bootstrap conservative
#> 1 -0.3413 0.4877   percent        FALSE
#> 2 -0.3413 0.4877   percent         TRUE
#> 3 -0.3397 0.4870     basic        FALSE
#> 4 -0.3397 0.4870     basic         TRUE
#> 5 -0.3416 0.4876       bca        FALSE
#> 6 -0.3416 0.4876       bca         TRUE

𝑈
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To specify comparative bounds, we need to make one additional assumption on the covariates: We suppose
that  can be divided into two disjoint sets  such  that the following condition holds

sa <- remove_bound(sa, "b3")
sa <- remove_bound(sa, "b4")
sa <- remove_bound(sa, "b5")

print(sa)
#> Sensitivity Analysis:
#> 
#> Dependent Covariates:  exper expersq smsa 
#> Independent Covariates:  black south 
#> 
#> Estimators:
#> OLS   0.074 
#> TSLS  0.132 
#> 
#> 95% Confidence Intervals:
#> OLS  [ 0.067 , 0.081 ]
#> TSLS [ 0.036 , 0.229 ]
#> 
#> Specified Bounds:
#> [1] arrow kind  lb    ub    b     I     J    
#> <0 rows> (or 0-length row.names)

𝑋 𝑋
~

�̇�

= 0.𝑅2
𝑈∼ | ,𝑍�̇� 𝑋

~
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This means that the covariates  cannot explain any variation in the unmeasured confounder if we also account
for  and the instrument . Therefore, one may think about  as covariates that are in some sense
“independent” of the unmeasured confounder and of  as “dependent”. When we created the sa object at the
start of the previous section, we specified this partition of the covariates via the indep_x and dep_x parameters.

We chose the covariates black and south as -covariates because we believe that motivation  does not
correlate with them after controlling for other covariates. For the remaining covariates, we are not entirely sure;
so, we designate them as -covariates. In the following, we use covariates in  and compare them to the
unmeasured confounder  to obtain more interpretable bounds.

Let us first consider the OLS sensitivity parameters. We may for instance choose the indicator for being black
(here denoted as ) as comparison variable and specify the comparative bound

This bound expresses the belief that being black can explain at most 4 times as much variation in education as
motivation can, after controlling for the other covariates and the instrument. In many settings, it may be easier
to specify such a comparative bound and reason about whether one should choose a larger or smaller number
than 4 than imposing a direct bound on .

Similarly, we can also specify a bound on the relationship between  and :

This corresponds to the belief that being black can explain at most 5 times as much variation in income than
motivation can, after accounting for the remaining covariates, the instrument and education .

We can add these constraints to sa as follows.

�̇�

𝑋
~

𝑍 �̇�

𝑋
~

�̇� 𝑈

𝑋
~

�̇�
𝑈

�̇� 𝑗

≤ 4 .𝑅2
𝐷∼𝑈| , ,𝑍𝑋

~
�̇� −𝑗

𝑅2
𝐷∼ | , ,𝑍�̇� 𝑗 𝑋

~
�̇� −𝑗

𝑅𝐷∼𝑈|𝑋,𝑍

𝑌 𝑈

≤ 5 .𝑅2
𝑌∼𝑈| , ,𝑍,𝐷𝑋

~
�̇� −𝑗

𝑅2
𝑌∼ | , ,𝑍,𝐷�̇� 𝑗 𝑋

~
�̇� −𝑗

𝐷

sa <- add_bound(sa, arrow = "UD", kind = "comparative", b = 4, I = "south", J = "black")
sa <- add_bound(sa, arrow = "UY", kind = "comparative-d", b = 5, I = "south", J = "black")
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Here, J refers to the comparison covariate and I is a subset (usually the entire set) of the remaining -
covariates. There also exists a version of the second bound that does not control for ; to apply this constraint,
use kind = "comparative".

As before, we can now compute the PIR and the sensitivity interval.

print(sa)
#> Sensitivity Analysis:
#> 
#> Dependent Covariates:  exper expersq smsa 
#> Independent Covariates:  black south 
#> 
#> Estimators:
#> OLS   0.074 
#> TSLS  0.132 
#> 
#> 95% Confidence Intervals:
#> OLS  [ 0.067 , 0.081 ]
#> TSLS [ 0.036 , 0.229 ]
#> 
#> Specified Bounds:
#>    arrow          kind     lb    ub b     I     J
#> b6    UD   comparative -0.410 0.410 4 south black
#> b7    UY comparative-d -0.431 0.431 5 south black

�̇�
𝐷

pir4 <- pir(sa, grid_specs = grid_specs)
print(pir4)
#> [1] 0.04367 0.13341
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Similarly, we can also specify comparative constraints for the TSLS sensitivity parameters, for instance:

We can add these to sa as follows. (Note that we do not need to specify I here as this is automatically set as
the remaining -covariates)

We recompute the partially identified range and the 95% sensitivity interval.

sensint4 <- sensint(sa, alpha = 0.05, boot_samples = 3500,
                    grid_specs = grid_specs)
print(sensint4)
#> 95% Sensitivity Intervals:
#>        sl     su bootstrap conservative
#> 1 0.02998 0.1575   percent        FALSE
#> 2 0.02998 0.1575   percent         TRUE
#> 3 0.03156 0.1528     basic        FALSE
#> 4 0.03156 0.1528     basic         TRUE
#> 5 0.02979 0.1567       bca        FALSE
#> 6 0.02979 0.1567       bca         TRUE

𝑅2
𝑍∼𝑈| ,𝑋

~
�̇� −𝑗

𝑅2
𝑌∼𝑍|𝑋,𝑈,𝐷

≤ 0.5𝑅2
𝑍∼ | ,�̇� 𝑗 𝑋

~
�̇� −𝑗

≤ 0.1𝑅2
𝑌∼ | , ,𝑍,𝑈,𝐷�̇� 𝑗 𝑋

~
�̇� −𝑗

�̇�

sa <- add_bound(sa, arrow = "ZU", kind = "comparative", b = 0.5, J = "black")
sa <- add_bound(sa, arrow = "ZY", kind = "comparative", b = 0.1, J = "black")
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Analogously to the sensitivity model with direct bounds, we notice that adding constraints on  and
 does not palpably improve neither the PIR nor the sensitivity intervals. Hence, the analysis is much

more sensitive to violations of the TSLS than the OLS assumptions.

We’d like to emphasize that users can use both direct and indirect bounds including on the same arrow. In this
vignette, we have only separated them to explain them more easily.

b- and R-contour plots

When we specify comparative bounds, we need to choose the comparison covariate and the -factor,
e.g. being black explains at most 4 times as much variation as motivation, here . To examine multiple
choices of  at the same time, we can use the b_contours function.

pir5 <- pir(sa, grid_specs = grid_specs)
print(pir5)
#> [1] 0.04367 0.13341

sensint5 <- sensint(sa, alpha = 0.05, boot_samples = 3500,
                    grid_specs = grid_specs)
print(sensint5)
#> 95% Sensitivity Intervals:
#>        sl     su bootstrap conservative
#> 1 0.02983 0.1577   percent        FALSE
#> 2 0.02954 0.1580   percent         TRUE
#> 3 0.03071 0.1532     basic        FALSE
#> 4 0.03039 0.1538     basic         TRUE
#> 5 0.02965 0.1578       bca        FALSE
#> 6 0.02944 0.1582       bca         TRUE

𝑈 ↔ 𝑍
𝑍 → 𝑌

𝑏
𝑏 = 4

𝑏
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We choose two comparative bounds ("b6" and "b7" in this example) and two corresponding ranges of -values
and specify whether we want to plot the lower or upper end of the PIR. Moreover, we choose a value of interest
(usually 0) and the grid_specs_b parameter which controls how finely range1 and range2 are discretized.
b_contours produces a ggplot contour plot that can be printed.

𝑏

b_contour_plot <- b_contours(sa, pir_lower = TRUE,
                             bound1 = "b6", range1 = c(0.1, 12),
                             bound2 = "b7", range2 = c(0.1, 15),
                             val_interest = 0,
                             grid_specs_b = list(N1b = 20, N2b = 20),
                             grid_specs = grid_specs)

print(b_contour_plot)
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Bounds "b6" and "b7" use -factors of 4 and 5, respectively. The plot shows that we need to choose values at
least twice as large to push the the lower end of the PIR beyond zero. Hence, even more permissive sensitivity

𝑏
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models can lead to the qualitatively same conclusion that the estimated effect is positive even when
unmeasured confounding occurs.

If users would like to customize the plot, they can use the b_contours_data function to just create the data
frame which the contour plot is based on and then visualize it themselves. Here is an example how one of the
figures in Freidling and Zhao (2025) is created.

library(ggplot2)
library(ggrepel)
library(metR)

plot_data <- b_contours_data(sa, pir_lower = TRUE,
                        bound1 = "b6", range1 = c(0.1, 12),
                        bound2 = "b7", range2 = c(0.1, 15),
                        grid_specs_b = list(N1b = 20, N2b = 20),
                        grid_specs = grid_specs)

print(head(plot_data))
#>        x   y       z
#> 1 0.1000 0.1 0.07320
#> 2 0.7263 0.1 0.07314
#> 3 1.3526 0.1 0.07314
#> 4 1.9789 0.1 0.07314
#> 5 2.6053 0.1 0.07314
#> 6 3.2316 0.1 0.07314

text_point <- paste0("(", 4, ", ", 5, ")")
make_breaks <- function(range, binwidth) {
  signif(pretty(range, 15), 4)
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}
make_breaks_ex <- function(range, binwidth) {
  b <- make_breaks(range, binwidth)
  b[b != 0]
}

pl <- ggplot(plot_data, aes(x, y, na.rm = TRUE)) +
  geom_contour_fill(aes(z = z, fill = after_stat(level)),
                    breaks = make_breaks,
                    show.legend = FALSE) +
  geom_contour2(aes(z = z, label = after_stat(level)),
                breaks = make_breaks_ex,
                col = "black",
                label_size = 5,
                linewidth = 0.25) +
  geom_contour2(aes(z = z, label = after_stat(level)),
                breaks = 0,
                linewidth = 1.25,
                label_size = 7,
                col = "black") +
  scale_fill_discretised(low = "#0072B2", high = "#F0E442") +
  geom_point(data = data.frame(x = 4, y = 5), size = 3,
             mapping = aes(x, y), col = "black") +
  geom_text_repel(data = data.frame(x = 4, y = 5, label = text_point),
                  mapping = aes(x, y, label = label),
                  col = "black",
                  size = 6,
                  xlim = c(0, 13),
                  ylim = c(0, 15)) +
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  labs(x = expression("b"["UD"]),
       y = expression("b"["UY"])) +
  scale_x_continuous(breaks = seq(0, 12, by = 2)) +
  theme_bw() +
  theme(plot.title = element_blank(),
        axis.text = element_text(size = 20),
        axis.title = element_text(size = 20),
        title = element_text(size = 20))

print(pl)
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Beyond -contour plots, we offer -contour plots which visualize the estimated causal effect as a function of
 and . As this does not require bounds, we can remove the previously specified bounds.

𝑏 𝑅
𝑅𝐷∼𝑈|𝑋,𝑍 𝑅𝑌∼𝑈|𝑋,𝑍,𝐷
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In order to focus on the non-extreme values of the sensitivity parameters - in other words to zoom in - we
specify direct bounds on  and . This is optional, though.

In addition to the contours of the estimated causal effect, we can plot comparison points that provide context
for the order of magnitude of the sensitivity parameters. To this end, we choose some of the -covariates and
different multipliers for each of them. This is done in the comparison_ind list. We pass this parameter along with
other already familar ones to r_contours. Here, we choose comparison = "comp-d"; other options are "comp"
(analogous to a comparative bound on  that does not account for ) and "naive" which is not
recommended. Setting iv_lines = TRUE would also plot the combinations of values that  and

 need to fulfill if  is indeed a valid instrument; these combinations typically form two lines in the
plotted plane.

𝑈 → 𝐷 𝑈 → 𝑌

sa <- remove_bound(sa, "b6")
sa <- remove_bound(sa, "b7")
sa <- remove_bound(sa, "b8")
sa <- remove_bound(sa, "b9")

sa <- add_bound(sa, arrow = "UD", kind = "direct", lb = -0.75, ub = 0.75)
sa <- add_bound(sa, arrow = "UY", kind = "direct", lb = -0.75, ub = 0.75)

�̇�

𝑈 → 𝑌 𝐷
𝑅𝐷∼𝑈|𝑋,𝑍

𝑅𝑌∼𝑈|𝑋,𝑍,𝐷 𝑍

comparison_ind <- list(black = c(1, 2, 5), south = c(1, 2, 5))
grid_specs <- list(N1 = 400, N2 = 400, N5 = 400)

r_contour_plot <- r_contours(sa, val_interest = 0,
                             comparison_ind = comparison_ind,
                             comparison = "comp-d",
                             iv_lines = FALSE,
                             grid_specs = grid_specs)
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print(r_contour_plot)
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The -contour plot shows that an unmeasured confounder that is five times as strong as being black or living in
the southern US would still not suffice to completely push the estimate to 0.

𝑅
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Analogously to the -contour plots, there also exists an r_contours_data function which provides the
underlying data and allows the users to create the plot themselves according to their preferences. See the
Github repository optsens-replication for more examples of how to use this and other functions.
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-calculusR2

(i) Independence: If , then .


(ii) Independent additivity: If , then 
.


(iii) Decomposition of unexplained variance: 



(iv) Recursion of partial correlation: 

Y ⊥⊥ X R2
Y∼X = 0

X ⊥⊥ W
R2

Y∼X+W = R2
Y∼X + R2

Y∼W

1 − R2
Y∼X+W = (1 − R2

Y∼X)(1 − R2
Y∼W|X)

RY∼X|W =
RY∼X − RY∼WRX∼W

1 − R2
Y∼W 1 − R2

X∼W
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(v) Reduction of partial correlation: If  and 
 is one-dimensional and , then 




(vi) Three-variable restriction: If  and  is 
one-dimensional, then 




All statements are also true when  is 
partialed out, i.e. add “ ”.

X
W Y ⊥⊥ W

RY∼X|W =
RY∼X

1 − R2
X∼W

X W

fY∼X|W 1 − R2
Y∼W|X = fY∼X 1 − R2

X∼W − RY∼W|XRX∼W .

Z
|Z


