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1 Introduction

The problem of transporting people, masses, resources etc. in an optimal way is an intuitive
mathematical question and naturally arises in many applications. Consequently, it is not sur-
prising that its first description dates back as far as Monge (1781). Still mainly concerned
with practical issues, researchers in the 1930s and 1940s, foremost Kantorovich (1942), lay the
foundations for the theory of optimal transport. Since mathematicians discovered the deep
connections to partial differential equations, statistics and optimization, e.g. Brenier (1991),
optimal transport became an active field of research and flourished especially due to its appli-
cation in machine learning and data science. In particular, the Wasserstein metric W (α, β) is
a popular tool to describe the distance between two distributions α and β as it only requires a
minimum of assumptions, for example the support of α and β can differ.
The computation of the Wasserstein metric is involved as the underlying optimization problem
is not convex and the convergence speed suffers from the curse of dimensionality. Many appli-
cations, however, showed that adding an entropic regularization term is a successful strategy to
circumvent these problems. Genevay, Chizat, et al. (2019) provided a rigorous treatment of this
phenomenon and established a bound on the sample complexity that decays as O(n−1/2). Mean-
while, Marino and Gerolin (2020) generalized the existing theory around the entropy-regularized
optimal transport problem to a class of convex regularization functions. Yet, results on the sam-
ple complexity for this more general problem are still a blind spot. Our work shows that it is
indeed possible to achieve sample complexities of order O(n−1/2), given that suitable regularity
conditions are fulfilled.
Section 2 introduces the optimal transport problem and its regularized version and Sections 4
and 5 generalize Genevay, Chizat, et al.’s sample complexity result to a more general class of
functions. In Section 6 we summarize algorithms to compute Sinkhorn divergences. Finally, we
conduct experiments that confirm our theoretical findings in Section 7.

2 Optimal Transport

We base our description of optimal transport on Peyré and Cuturi (2019). In its original for-
mulation, Monge considered the optimal transport problem as determining a permutation that
assigns the source points x1, . . . , xm to target points y1, . . . , yn such that a cost function c is
minimized. This so-called Monge problem can be extended to the case of transporting an arbi-
trary mass to another mass, represented by two probability measures, by expressing it in terms
of finding a cost-minimal map. However, both the former and the latter problem are hard to
solve as they are combinatorial and non-convex, respectively.
For this reason, Kantorovich (1942) proposed the following relaxed version.

1



Definition 2.1 (Discrete Optimal Transport Problem). Let a and b be two weight vectors. The
set of coupling matrices is given by

U(a, b) = {P ∈ Rn×m+ : P1m = a,PT1n = b}.

Let C ∈ Rn×m be a cost matrix. Then the discrete optimal transport problem is

OTdisc(a, b) = min
P∈U(a,b)

∑
i,j

PijCij .

This formulation allows, unlike Monge’s version, to split up a source mass ai and transport it
to different target masses. Figure 1 illustrates one example of discrete optimal transport. The
generalization from discrete mass to continuous probability measures is straightforward, see also
Figure 2.

a1
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a3

a4 b3

b2

b1

Figure 1: Discrete Optimal Transport
Figure 2: Continuous Optimal Transport

Definition 2.2 (Optimal Transport Problem). Denote the space of positive Radon probability
measures on a domain D byM1

+(D). Let α and β be probability measures on the metric spaces
X and Y . The space of couplings is given by

Π(α, β) := {π ∈M1
+(X × Y ) : π(A× Y ) = α(A), π(X ×B) = β(B) ∀A,B ⊂ X,Y }.

Let c : X × Y → R be a cost function. Then the optimal transport problem is

OT(α, β) = min
π∈Π(α,β)

∫
X×Y

c(x, y) dπ(x, y).

Definition 2.3 (Wasserstein distance). In the setting of Definition 2.2, assume that X = Y is
endowed with a distance d. If c(x, y) = d(x, y)p, p ≥ 1, the p-Wasserstein distance is defined as

Wp(α, β) =
(
OT(α, β)

)1/p
.

The Wasserstein distance becomes increasingly popular in applications, such as machine learning,
to compare distributions. In particular, it does not require that the two measures have common
support and also allows to compute the distance between a discrete and continuous distribution.
However, its computation is expensive as it suffers from the curse of dimensionality.
To avoid this bottleneck, many authors add a regularization term, a technique that was first
used by Wilson (1969). This renders the problem strictly convex and decreases computation
time considerably, cf. Cuturi (2013). Algorithms like Sinkhorn and variations of it are easy
to implement and yield good convergence behaviour which contribute to the increasing use of
Wasserstein distances. They are presented in more detail in Section 6.
We define the general regularized optimal transport problem according to Marino and Gerolin
(2020).
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Definition 2.4 (Regularized Optimal Transport). Let X and Y be two bounded subsets of
Rd and let α and β be probability measures on X and Y , respectively. Let c : X × Y → R
be a bounded cost function and let ε > 0. Assume that Φ: [0,∞] → [0,∞] is convex, lower
semi-continuous and superlinear at infinity, Φ ∈ C1((0,∞)) and Φ(1) = Φ′(1) = 0. The optimal
transport problem with convex regularization is given by

OTε(α, β) = inf
π∈Π(α,β)

∫
X×Y

c(x, y) dπ(x, y) + εG(π|α⊗ β), (1)

where G is defined as

G(π|α⊗ β) =

{ ∫
X×Y Φ

(
dπ

d(α⊗β)

)
d(α⊗ β), if π � α⊗ β,

+∞, otherwise.
(2)

Example 2.1 (Entropic regularization). The most common choice for the regularization term is
Φ(z) = z(log(z) − 1) + 1. This yields G(π|α ⊗ β) = KL(π ‖α ⊗ β) and is consequently called
entropic regularization.

Example 2.2 (Tsallis entropy). Let q > 1. The Tsallis entropy, cf. Muzellec et al. (2017), is
given by

Φ(z) =
1

q(q − 1)

(
zq − q(z − 1)

)
. (3)

Example 2.3 (Quadratic regularization).

Φ(z) =
1

2
|z|2 (4)

Similar to the unregularized case, we can define a distance based on the solution of the regularized
optimal transport problem.

Definition 2.5. In the setting of Definition 2.4, we define the Φ-divergence between α and β
as

OTε = OTε

(
α, β)− 1

2
(OTε(α, α) + OTε(β, β)

)
.

For entropic regularization, we refer to OTε as Sinkhorn-divergence and can prove non-negativity.

The optimization problem (1) has a dual formulation that is a consequence of Fenchel-Rockafellar’s
Theorem. Genevay, Cuturi, et al. (2016) proved this result for entropic regularization and
Marino and Gerolin (2020) contributed the result for general convex regularization functions.

Theorem 2.6 (Dual formulation). In the setting of Definition 2.4, the Legendre conjugate Ψ
of Φ is given by

Ψ(t) = sup
s∈[0,∞]

(st− Φ(s)), t ∈ [0,∞].

The dual formulation of the regularized optimal transport problem is

Dε(α, β) = sup
u∈C(X),
v∈C(Y )

∫
X
udα+

∫
Y
vdβ − ε

∫
X×Y

Φ

(
u(x) + v(y)− c(x, y)

ε

)
d(α⊗ β)

and OTε(α, β) = Dε(α, β).
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3 Sample Complexity for the Classical Entropy

When the Sinkhorn algorithm is applied to continuous measures in practice, these measures
usually are known only empirically. That is, if we want to solve the regularized optimal transport
problem OTε(α, β) , the input is only the finite dataset X1, . . . , Xn, Y1, . . . , Yn with law(Xi) = α,
law(Yi) = β, all independent. The only thing we can solve is then the problem OTε(α̂n, β̂n),
where α̂n = 1

n

∑n
i=n δXi , β̂n = 1

n

∑n
i=n δYi are the discrete sample measures. A crucial question

is thus what kind of convergence we can be expected on average in the number of samples. That
is, one wants to derive quantitative estimates on

EX1,...,Yn

∣∣∣OTε(α, β)−OTε(α̂n, β̂n)
∣∣∣

independently of the initial distributions α, β.
In the case of the classical entropy with Legendre conjugate Ψ(t) = exp(t), Genevay, Chizat,
et al. (2019) derive the following result:

Theorem 3.1. (Genevay, Chizat, et al. (2019) , Theorem 3) Let α, β be probability measures
supported in bounded subsets in X,Y ⊂ Rd. Let c : X × Y → R be a smooth, L-Lipschitz cost
function. Then

EX1,...,Yn

∣∣∣OTε(α, β)−OTε(α̂n, β̂n)
∣∣∣ = O

(
Ψ
(
κε−1

)
√
n

(
1 + ε−d

d
2e
))

where κ := diam(X)L + ‖c‖∞ and the implicit constant depends only on diam(X),diam(Y ), d
and E := sups=0,...,d d2e ‖c

(s)‖∞.

They proved the theorem by showing that the optimizers u, v of Wε(α, β) have bounded s-
Sobolev norm for any s, independent of α and β. This allowed them to apply ”standard”
PAC-learning results in reproducing kernel Hilbert spaces (RKHS) to derive the bound above.
The main step towards the proof of Theorem 3.1 was thus to establish the following proposition.

Proposition 3.2. Let α, β be probability measures supported in bounded subsets in X,Y ⊂ Rd.
Let c : X × Y → R be a smooth, L-Lipschitz cost function. Let u, v be optimizers of OTε(α, β).
Then u is in C∞ and L-Lipschitz, u(x) ∈ ran[c(x, ·)− v(·)] and

‖u(s)‖∞ = O
(

1 + ε−(s−1)
)

for all s, with the constant depending only on the first s derivatives of c and on X.

The main ingredient in the proof of this proposition is the equation

exp(−u(x)) =

∫
exp

(
v(y)− c(x, y)

ε

)
dβ (5)

derived from the optimality condition.
In the next part we will derive the analogue of Equation (5) for general Ψ and prove a version
of Proposition 3.2 under certain conditions on Ψ. We then copy the reasoning of Genevay et al.
to derive our main result, Theorem 5.4, which is an analogue of Theorem 3.1 for more general
regularization functions.
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4 Regularity of the Maximizers

Recall that we aim to study the maximizers of the dual problem

Dε(u, v) =

∫
u dα+

∫
v dβ − ε

∫∫
Ψ
(
(u(x) + v(y)− c(x, y))/ε

)
dα(x)dβ(y),

where Ψ is the Legendre transform of Φ. Existence of the maximizers was shown in Marino and
Gerolin (2020).
We will start by finding the correct analogue of Equation (5). For this, we study a pair of
maximizers (u, v) through the maximizing condition. For any ϕ ∈ C(X), the function g : t 7→
Dε(u+ tϕ, v) has a local maximum at 0. Thus

0 =
dg

dt
(0) =

∫
ϕdα−

∫
ϕ(x)

∫
Ψ′
(
(u(x) + v(y)− c(x, y))/ε

)
dα(x)dβ(y)

and as ϕ is arbitrary,

1 =

∫
Ψ′
(
(u(x) + v(y)− c(x, y))/ε

)
dβ(y). (6)

We now prove a result analogous to Proposition 3.2. This will be the heart of the theoretical
part in this document.

Proposition 4.1. Let Ψ be the Legendre conjugate of the regularization function Φ.
Let α, β be probability measures supported in bounded subsets in X,Y ⊂ Rd. Let c : X × Y → R
be a smooth, L-Lipschitz cost function. Set K := [−2(L|X|+ ‖c‖∞), 2(L|X|+ ‖c‖∞)].
As Ψ is convex, Ψ′′ ≥ 0. Assume that Ψ′′ is bounded from below on 1

εK by a strictly positive
constant Dε > 0 and that s ∈ N is such that

max
r=3,...,s

max
t∈ 1

ε
K
|Ψ(r)(t)| ≤ Cε <∞.

Let u, v be optimizers of Dε(α, β). Then u is L-Lipschitz, u(x) ∈ ran[c(x, ·)− v(·)] and

‖u(s)‖∞ = O

(
1 +

(
Cε
εDε

)s−1
)

with the constant depending only on X and on the supremum norm of the first s derivatives of
the cost function c.

We will split the proof into several lemmas. Throughout this section we will work under the
assumptions in the statement of Proposition 4.1 and we will use the constants L, Cε, Dε defined
in the statement.

Lemma 4.2. The optimal potential u is L-Lipschitz.

This was proved in Marino and Gerolin (2020). Alternatively, it can be seen directly from
Equation (6) by applying ∂x, splitting the integral and taking absolute values.

Lemma 4.3. If X and Y are compact sets of Rd and c ∈ C∞, then

u(x) ≤ max
y

(c(x, y)− v(y)) and u(x) ≥ min
y

(c(x, y)− v(y)).

for all x in X.
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Proof. For u, v maximizers we know that the identity

1 =

∫
Ψ′ ((u(x) + v(y)− c(x, y))/ε) dβ(y)

holds for every x in X. Since β is a probability measure, we have that for every x

1 ∈
[
min
y

Ψ′ ((u(x) + v(y)− c(x, y))/ε) ,max
y

Ψ′ ((u(x) + v(y)− c(x, y)/ε))

]
=

[
Ψ′
(

1

ε
min
y

(u(x) + v(y)− c(x, y))

)
,Ψ′

(
1

ε
max
y

(u(x) + v(y)− c(x, y))

)]
,

where we used that Ψ′ is increasing. We also have that Φ′ is increasing and that, since Ψ is the
Legendre conjugate of Φ, it holds that (Ψ′)−1 = Φ′. Hence,

Φ′(1) ≥
(

1

ε
min
y

(u(x) + v(y)− c(x, y))

)
,

and

Φ′(1) ≤
(

1

ε
max
y

(u(x) + v(y)− c(x, y))

)
.

Using the assumption Φ′(1) = 0 in Definition 2.4, we conclude

u(x) ≤ max
y

(c(x, y)− v(y)) and u(x) ≥ min
y

(c(x, y)− v(y)).

Without loss of generality we can assume that u(x0) = 0 for some x0 ∈ X; else, replace
u and v by u − u(x0) and v + u(x0). Thus, by the last two lemmas, ∀x ∈ X, y ∈ Y ,
|u(x)| ≤ L|x| and |v(y)| ≤ ‖c‖∞ + ‖u‖∞. In particular, if we define K as in the statement of
Proposition 4.1 by K := [−2(L|X|+ ‖c‖∞), 2(L|X|+ ‖c‖∞)], we have

∀x ∈ X, y ∈ Y, u(x) + v(y)− c(x, y) ∈ K.

We are now in the position to derive the desired bounds on the Sobolev norm under our as-
sumptions. We set

E := max
i=1,...,s

‖c(i)‖∞. (7)

Lemma 4.4. For every m ≤ s it holds that

‖u(m)‖∞ = O

(
1 +

(
Cε
Dε

)m−1 1

εm−1

)
,

where the implicit constant depends only on m and E.

Proof. We proceed by induction for l ≤ s. For l = 1 we know from Lemma 4.2 that ‖u′‖∞ ≤
‖c′‖∞ ≤ E.
For a bigger l, we use the iterated chain rule formula to derive that

0 = ∂lx

∫
Ψ′((u+ v − c)/ε)dβ =

∑
α∈Tl

(
l

α

)∫
Ψ(|α|+1)

ε|α|

l∏
m=1

(
u(m) − ∂mx c

m!

)αm
dβ,
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with the multi-index set Tl := {α ∈ Nl |
∑l

s=1 sαs = l}. The argument of (u+v−c)/ε is dropped
for brevity whenever possible.
The α in Tl having αl = 1 gives us the u(l) we want to estimate, so

|u(l)(x)| = 1∫
Ψ′′dβ

∣∣∣∣∣∣∣∣
∫
c(l)Ψ′′ +

∑
α∈Tl
αl 6=1

(
l

α

)
Ψ(|α|+1)

ε|α|−1

l−1∏
m=1

(
u(m) − ∂mx c

m!

)αm
dβ

∣∣∣∣∣∣∣∣
≤ E +

1∫
Ψ′′dβ

∑
α∈Tl
αl 6=1

(
l

α

)∫
Ψ(|α|+1)dβ

ε|α|−1

l−1∏
m=1

(
‖u(m)‖∞ + E

m!

)αm

≤ E +
Cε
Dε

∑
α∈Tl
αl 6=1

(
l

α

)
1

ε|α|−1

l−1∏
m=1

(‖u(m)‖αm∞ ∨ 1)

m!αm
(E + 1)αm

 .
In the following computations we will assume that ε ≤ 1; for ε ≥ 1, one can just bound all terms
of ε−l by 1 and copy the same steps.
Suppose by inductive hypothesis that

‖u(m)‖∞ ≤Mm

(
Cε
Dε

)(m−1) 1

εm−1

for all m ≤ l− 1, for some constant Mm = Mm(E). Without loss of generality Mm−1 ≤Mm. In
the following steps we use that for α ∈ Tl,

∑
mmαm = l.

‖u(l)‖∞ ≤ E +
Cε
Dε

∑
α∈Tl
αl 6=1

(
l

α

)
1

ε|α|−1

l−1∏
m=1

(
Mm

(
Cε
Dε

)(m−1) 1

εm−1

)αm
(E + 1)αm

m!αm



≤ E +
Cε
Dε

∑
α∈Tl
αl 6=1

(
l

α

)
1

ε|α|−1
M
|α|
l−1

(
Cε
Dε

)∑l−1
m=1(m−1)αm 1

ε
∑l−1
m=1(m−1)αm

l−1∏
m=1

(E + 1)αm

m!αm



≤ E +
Cε
Dε

∑
α∈Tl
αl 6=1

(
l

α

)
1

ε|α|−1
M
|α|
l−1

(
Cε
Dε

)l−|α| 1

εl−|α|

l−1∏
m=1

(E + 1)αm

m!αm



≤ E +
1

εl−1

(
Cε
Dε

)l−1

∑
α∈Tl
αl 6=1

(
l

α

)
M
|α|
l−1

l−1∏
m=1

(E + 1)αm

m!αm


= O

(
1 +

(
Cε
Dε

)l−1 1

εl−1

)
,

and the constant depends only on E and l.
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5 Sample Complexity for Generalized Regularization Functions

By applying Proposition 4.1 to s = bd2c+ 1, we have already proved that the optimal potentials

are in a bounded ball with radius λε in the RKHS Hs(Rd) for s = bd2c+ 1, with λε independent
of the measures. We can now follow the reasoning in Genevay, Chizat, et al. (2019) to derive a
quantitative bound on the sample complexity for a general regularization function.
We introduce the abbreviation fε(u, v) = fx,yε (u, v) = u(x)+v(y)−εΨ((u(x)+v(y)−c(x, y))/ε)
and prove that fε is Lipschitz in (u, v) on a certain subset that contains the optimal potentials.

Lemma 5.1. Let A = {(u, v) | u⊕ v ≤ 2L|X|+ ‖c‖∞}. We have:

(i) the pairs of optimal potentials (u∗, v∗) such that u∗(0) = 0 belong to A,

(ii) fε is B-Lipschitz in (u, v) on A with B ≤ 1 + Ψ′(κε−1), where κ := 2L|X|+ ‖c‖∞.

Proof. Let us prove that we can restrict ourselves to a subset on which fε is Lipschitz in (u, v).

∇fε(u, v) = 1−Ψ′
(
u+ v − c

ε

)
.

To ensure that fε is Lipschitz, we need to ensure that the quantity inside Ψ′ is upperbounded
at optimality and then restrict the function to all (u, v) that satisfy that bound.
By Lemma 4.3 and Lemma 4.2 we know that if (u, v) are potentials such that u(0) = 0 then for
every x ∈ X, y ∈ Y ,

|u(x)| ≤ L|x| and |v(y)| ≤ ‖c‖∞ + ‖u‖∞.

So at optimality for all x ∈ X, y ∈ Y,

|u(x) + v(y)| ≤ 2L|X|+ ‖c‖∞.

Denoting A := {(u, v) ∈ (Hs(Rd))2 | u⊕ v ≤ 2L|X|+ ‖c‖∞}, we have that for all (u, v) in A,

|∇fε(u, v)| ≤ 1 + sup
(u,v)∈A

|Ψ′
(
u+ v − c

ε

)
| ≤ 1 + Ψ′(κε−1).

for κ := 2L|X| + ‖c‖∞. Where we used that Φ is restricted to [0,∞] (as in Definition 2.4), so
Ψ′ ≥ 0 and we can get rid of the absolute value, and the fact that Ψ′ is increasing.

We will need one more auxiliary lemma before we can prove the main result.

Lemma 5.2. Let Hsλ := {u ∈ Hs(Rd) | ‖u‖Hs(Rd) ≤ λ}, then there exists λ such that:

|Dε(α, β)−Dε(α̂n, β̂n)| ≤ 3 sup
(u,v)∈(Hsλ)2

|EfXYε (u, v)− 1

n

n∑
i=1

fXiYiε (u, v)|.

Proof. Applying the triangular inequality we have that

|Dε(α, β)−Dε(α̂n, β̂n)| = |EfXYε (u∗, v∗)− 1

n

n∑
i=1

fXiYiε (û, v̂)|

≤ |EfXYε (u∗, v∗)− EfXYε (û, v̂)|+ |EfXYε (û, v̂)− 1

n

n∑
i=1

fXiYiε (û, v̂)|.

From Proposition 4.1, we know that the all the dual potentials are bounded in Hs(Rd) by a
constant λ = λε which does not depend on the measures. Thus, the second term is bounded by
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sup(u,v)∈(Hsλ)2 |Efε(u, v)− 1
n

∑n
i=1 fε(u, v)|.

The first quantity is non-negative since (u∗, v∗) is the maximizer of Efε(·, ·) so we don’t need
the absolute value. We have the following bound

EfXYε (u∗, v∗)− EfXYε (û, v̂) ≤

(
EfXYε (u∗, v∗)− 1

n

n∑
i=1

fXiYiε (u∗, v∗)

)

+

(
1

n

n∑
i=1

fXiYiε (u∗, v∗)− 1

n

n∑
i=1

fXiYiε (û, v̂)

)

+

(
1

n

n∑
i=1

fXiYiε (û, v̂)− EfXYε (û, v̂)

)
.

Now we can conclude since the first and last terms can be bounded by sup(u,v)∈(Hsλ)2 |EfXYε (u, v)−
1
n

∑n
i=1 f

XiYi
ε (u, v)| and the second term is non-positive since (û, v̂) maximizes 1

n

∑n
i=1 f

XiYi
ε (·, ·).

To prove Theorem 5.4, we will use this standard result on RKHS’s.

Proposition 5.3. (Bartlett and Mendelson (2003)) Consider α a probability distribution, ` a
B-lipschitz loss and G a given class of functions. Then

Eα

[
sup
g∈G

Eα`(g,X)− 1

n

n∑
i=1

`(g,Xi)

]
≤ 2BEαR(G(Xn

1 ))

where R(G(Xn
1 )) is the Rademacher complexity of class G defined by

R(G(Xn
1 )) = supg∈G Eσ 1

n

∑n
i=1 σig(Xi), where (σi)i are iid Rademacher random variables. Be-

sides, when G is a ball of radius λ in a RKHS with kernel k the Rademacher complexity is
bounded by

R(Gλ(Xn
1 )) ≤ λ

n

√√√√ n∑
i=1

k(Xi, Xi).

With all ingredients assembled, we can now prove Theorem 5.4.

Theorem 5.4. Consider the regularized transport problem between two measures α and β on X
and Y two bounded subsets of Rd, with a C∞, L-Lipschitz cost c and C∞ transform Ψ. One has

E|Dε(α, β)−Dε(α̂n, β̂n)| = O


(
1 + Ψ′(κε−1)

)(
1 +

(
1
ε
Cε
Dε

)bd/2c)
√
n


where κ := 2L|X|+ ‖c‖∞, and the constant only depends on |X|, |Y |, d, and E (where Cε, Dε

were defined in Proposition 4.1, and E was defined in (7) for s = bd/2c+ 1).

Proof. We start by applying Lemma 5.2 to bound the right hand side. Then, since fε is Lipschitz
and we are optimizing over Hs(Rd) which is a RKHS, we can apply Proposition 5.3 to bound
the supremum in Lemma 5.2. We get:

E|Dε(α, β)−Dε(α̂n, β̂n)| ≤ 3
2Bλ

n
E

√√√√ n∑
i=1

k(Xi, Xi) ≤ 3
2Bλ

n

√
nmax
x∈X

k(x, x).

Where
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• B ≤ 1 + Ψ′(κε−1), where κ = 2L|X|+ ‖c‖∞ (Lemma 5.1),

• λ = O
(

max

(
1, 1

εbd/2c

(
Cε
Dε

)bd/2c))
(Lemma 4.4).

• k is the kernel associated to Hs(Rd) and thus maxx∈X k(x, x) = k(0, 0) =: K which doesn’t
depend on n or ε.

Combining all these bounds, we get the desired convergence rate in 1√
n

.

6 Computation of Sinkhorn Divergences

The regularized optimal transport problem is particularly interesting as it has favourable com-
putational properties and, as we have seen, it does not suffer from the curse of dimensionality.
In particular, entropic regularization, see Example 2.1, provides a multiplicative structure that
can be exploited to construct an efficient algorithm. We recall the discrete, entropy-regularized
optimal transport problem

OTdisc,ε(a, b) = min
P∈U(a,b)

∑
i,j

PijCij + ε
∑
i,j

Pij(log(Pij)− 1), (8)

omitting constants that are not relevant for optimisation. Cuturi (2013) proved that the solution
has a particular form.

Theorem 6.1. The solution P to (8) is unique and has the form

Pij = uiKijvj , ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},

for unknown vectors u ∈ Rn+, v ∈ Rn+ and Kij = exp(−Cij/ε).

Remark 6.1. The vectors u and v are unique up to scaling and correspond to the dual solution.

Since P is an element of the space U(a, b), we obtain

diag(u)K diag(v)1m = a, diag(v)KT diag(u)1n = b.

We can use this two relations to define an algorithm that alternatingly updates u and v.

Algorithm 6.2 (Sinkhorn Algorithm). Let l denote the iteration number. The update scheme

u(l+1) :=
a

Kv(l)
, v(l+1) :=

b

KTu(l+1)
,

where v(0) = 1m and the division is componentwise, is called Sinkhorn algorithm.

Sinkhorn (1964) proved the convergence of the iteration which gave the algorithm its name.
In recent years, Sinkhorn-type algorithms became an active field of research and many variations
were proposed. Noteably, Muzellec et al. (2017) derived a variation for the Tsallis entropy.
Moreover, there exists a continuous analogue to Algorithm 6.2 which converges as well, as
Rüschendorf (1995) proved. Marino and Gerolin (2020) applied this algorithm to the optimal
transport problem with a general convex regularization function (1).
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Algorithm 6.3 (Generalized Sinkhorn Algorithm). In the setting of Definition 2.4, the gener-
alized Sinkhorn algorithm is given by the iteration

u(l+1)(x) := argmax
u∈C(X)

{∫
X
u dα− ε

∫
X×Y

Ψ

(
u+ v(l) − c

ε

)
d(α⊗ β)

}
,

v(l+1)(y) := argmax
v∈C(Y )

{∫
Y
v dβ − ε

∫
X×Y

Ψ

(
u(l) + v − c

ε

)
d(α⊗ β)

}
.

Although this algorithm converges, finding the maximizers in closed form is only possible for
specific regularizers. For this reason, we turn to another class of algorithms.
Ferradans et al. (2014) realized that the conditonal gradient algorithm, first proposed by Frank
and Wolfe (1956), is suited to accommodate complex regularization functions. Indeed, if the
objective is differentiable, we can find the steepest descent direction at the current location
via interior-point methods, cf. Nesterov and Nemirovskii (1994), and then update the position
towards the minimum.

Algorithm 6.4 (Frank-Wolfe Algorithm). In the setting of Definition 2.4 with discrete proba-
bility measures α and β, we define

f(P) :=
∑
i,j

PijCij + εΦ

(
Pij
aibj

)
,

and assume that f is differentiable. The Frank-Wolfe algorithm is given by the iteration

P̃(l+1) ∈ argmin
P∈U(a,b)

∑
i,j

(
∇f(P(l))

)
ij

P̃ij

P(l+1) := P(l) + τl
(
P̃(l+1) − P(l)

)
,

where l denotes the iteration number and τl is found via line search.

7 Experiments

The following numerical demonstrations were created using the Python Optimal Transport Li-
brary (Flamary et al. 2021).

7.1 Illustrating Optimal Transport

In this first section we illustrate the effect of regularization on the optimal transport plan of a
1D optimal transport problem. Figure 3 shows the optimal transport coupling between two 1D
probability distributions, and also the optimal entropy regularized coupling (using the Sinkhorn
algorithm) with ε = 0.01. Adding regularization broadens the coupling distribution and turns
it away from a one-to-one mapping.
Figure 4 shows the optimal transport plan using Tsallis entropy regularization with different q.
Specifically, the regularization term is ε times the relative Tsallis entropy with respect to the
product distribution of the source and target distribution, where the relative Tsallis entropy
between distributions α and β is given by

Hq(α‖β) =
1

q − 1

∫ [(
dα

dβ

)q−1

− 1

]
dα. (9)
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(b) entropy regularized (ε = 0.01)

Figure 3: Comparison of unregularized and entropy regularized 1D optimal transport plans.

This corresponds to the formalism of (2) together with (3). Numerically, we calculate this
regularized optimal transport plan using the Frank-Wolfe algorithm (Algorithm 6.4). While
it is not particularly fast or optimized for the given scenario, its generality allows for easy
experimentation with different regularizers.
For each q in Figure 4, ε is chosen such that all three distributions are about equally “broad”
to highlight the influence of q on the shape and the edges of the optimal transport plan. It
is apparent that for suitably chosen ε, Tsallis entropy regularization achieves a regularization
behavior similar in style to the Shannon entropy but with differences in the shape of the optimal
transport plan, which depends on q. It is thus natural to expect an overall similar behavior of
Tsallis entropy regularization in terms of usefulness in applications and also sample complexity.

Figure 4: Optimal transport plans with relative Tsallis entropy for q = (1.1, 2, 3) and ε =
(0.01, 0.001, 0.0005).
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7.2 Demonstrating the Sample Complexity

7.2.1 Simulation Set-up

To demonstrate the sample complexity, ideally we would like to compare the optimal transport
distance between two continuous distributions α, β to the optimal transport distance between
two samples from them α̂n, β̂n. However, we do not have a numerical method to calculate the
optimal transport distance between two continuous distributions exactly. One easy case is when
the optimal transport distance is zero i.e.,

OTε(α, β) = OTε(α, β)− 1

2
(OTε(α, α) + OTε(β, β)) = 0 ⇐⇒ α = β . (10)

In this case, with α̂n and α̂′n two independent samples from α, we then have

E|OTε(α̂n, α̂
′
n)| = E|OTε(α̂n, α̂

′
n)−OTε(α, α)| ?

= O
(

1√
n

)
. (11)

So this tests the desired behavior and is straightforward to calculate numerically. The plots in
this secion generally show E|OTε(α̂n, α̂

′
n)| as a function of n, where n increases on a logarithmic

scale from 10 to 102.5, and each point is an average of 300 independent samples. The shaded
area shows the range of one standard deviation. For α we choose the uniform distribution over
the unit hypercube in d dimensions (d will vary). Different curves then stand for different values
of ε, d or parameters of the regularization function.

7.2.2 Tsallis Relative Entropy Regularization

Figure 5 depicts the convergence behaviour in three dimensions for different ε and q.

101 102

n

10 3

10 2

10 1

0.001
0.01
0.1
1
10.0
100.0

(a) d = 3, q = 2, different ε

101 102

n

10 2

10 1

0.001
0.01
0.1
1
10.0
100.0

(b) d = 3, q = 5, different ε

Figure 5: Dependence of the convergence behavior on q and ε.

The plots hint at a linear relationship on a log-log scale. Thus, we fit functions of the form

OTε(α̂n, α̂
′
n) ≈ Ant (12)
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to investigate the respective exponents. Table 1 shows the exponent t for a range of different
ε and q. We find that for all tested parameter combinations here the convergence behavior is
better than O(1/

√
n).

Table 1: Fit parameter t for the Tsallis relative entropy regularization (d = 3).

Larger dimension

Figure 6 shows the convergence behavior for fixed q and ε but different d. One finds that for
large d, at least for the range of n considered, the behavior is actually worse than 1/

√
n. This

is found already using traditional entropy regularization (see plots in Genevay, Chizat, et al.
(2019), although not explicitly mentioned in their text), and is not entirely surprising: If ε is
very small, or alternatively the unregularized optimal transport distance very large, then the
problem is essentially unregularized, and we expect the sample complexity to behave badly
until n becomes large enough so that the unregularized distance is small and the regularization
becomes dominant. This is consistent with the constant of the 1/

√
n upper bound increasing with

decreasing ε. Since we are numerically limited to a quite small range of n where computation is
still feasible, it is hard to demonstrate in practice that for very large n the convergence eventually

101 102

n

10 2

10 1

2
3
5
7

(a) Plot as a function of n

d t

2 -0.870
3 -0.699
5 -0.463
7 -0.349

(b) Fit parameter t for different d

Figure 6: Dependence of the convergence behavior on d with q = 3 and ε = 0.01 fixed.
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returns to O(1/
√
n). However, for a fixed range of n we can try to find a “critical” range of ε

where the sample complexity behavior shifts. This is attempted in Figure 7. One finds in this
specific case that for ε / 0.25 the exponent of the decay gradually shifts towards larger values.

101 102

n

10 1

0.500
0.281
0.158
0.089
0.050
0.022
0.010

(a) Plot as a function of n

ε t

0.500 -0.554
0.281 -0.552
0.158 -0.546
0.089 -0.528
0.050 -0.506
0.022 -0.477
0.010 -0.464

(b) Fit parameter t for different ε

Figure 7: For d = 5 and q = 3, attempt to find the critical ε below which the convergence
behavior becomes worse than O(1/

√
n) in the range of n numerically accessible.
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Genevay, Aude, Lénäıc Chizat, Francis Bach, Marco Cuturi, and Gabriel Peyré (2019). “Sample
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