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Causal Inference and DAGs

* Directed Acyclic Graph (DAG)

e Linear Structural Equation Model

X = ey
Oy o——
Y = Py D+ Py X + &

« Goal: Estimate the causal effect of Don Y, i.e. e
estimate pyp from data (X, D,, Y;)._,



Causal Inference and Sensitivity Analysis

» Goal: Estimate fy

e Assumptions: Q

» Correction model specification, i.e. linearity

e Correct DAG

* No unmeasured confounders Q 9

» Sensitivity analysis explores how violations of
assumptions affect estimation

e This work: focus on unmeasured confounders e



Sensitivity Analysis - History

Cornfield et al. (1959): Association between smoking and lung cancer

Rosenbaum sensitivity model (Rosenbaum 1987), E-values (Ding and VanderWeele
2016), Marginal sensitivity model (Zhao et al. 2019, Dorn and Guo 2022),
Instrumental variables (Altonji et al. 2005, Small 2007) and many more

Lots of methods but hardly used in practice

Reason: simplistic and unintuitive

Proposal: constrained optimization — more flexibility and interpretability



Sensitivity Analysis - New Framework

« (V,U)'_; ~ Py, butonly (V)™ observed
« Objective: (0, v)

» 0 are estimable parameters, i.e. only depend on P,

o s are sensitivity parameters, i.e. depend on | V.U

» Specify domain knowledge as constraints: g(60,w) < 0, h(0,y) = 0

min/max (@, y) subjectto 2(0,w) <0, h(O,y) = 0.
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Linear Model

@ Ordinary Least Squares (OLS)
;  cov(YHXZ, pLx)
"i' YND‘X,Z T Var(DJ‘X9Z)

Unbiased, if at least one of the arrows is absent.

Two-Stage Least Squares (TSLS)
- cov(Y=4,Z+)
LS cov(DLX, Z1X)

Unbiased, if both of the arrows are absent.

Objective: / = Py pix.zu



Parameters 0 and y/ : R-values

» Let Y be arandom variable; X, W, Z be random vectors.

. Residual of Y after regressing out X denoted by Y~*

var(Y% | R2 .. . _R2
R*-value : Ry x:= S Partial R*-value : Ry ., := ot i
var(Y) 1 -R2_,
i 1Z yl1Z - Ry .xz
Partial R-value : Ry _yz:= corr(Y~, X~%) Partial f-value :  fy_y,:=

\/ I - R12/~X|Z

Cinelli and Hazlett (2020)



R4-calculus

(i) Independence: If Y 1L X, then R%NX = 0.

(i) Independent additivity: If X 1L W, then
2 _ 2 2
Ry xiw = Ry x + Ry _y

(i) Decomposition of unexplained variance'
2 _ 2
I = RY~X+W = (I = Ry (1 - W\X)

(iv) Recursion of partial correlation:
Ry x — Ry wRx. w

\/1—R W\/I—R2N

Ry. xjw =

(v) Reduction of partial correlation: If X and

W is one-dimensional and Y 1 W, then
Ry x

(vi) Three-variable restriction: If X and Wis
one- dimensional, then

fY~X|W\/ I - Y~W|X _fY~X\/ I = R)2(~W - RY~W|XRX~W -

All statements are also true when Z is
partialed out, i.e. add “| Z”.

Anderson (1958)



Identifying objective /) in terms of  and v

Causal effect: f = By .pix.zu

-
"
.

od ( YJ_X,Z,D)

= Dy _ — R - ~ VTN
ﬁ ﬁY D|X.,Z Y U\X,Z,DfD UlX,Z Sd(DJ_X,Z)

Sensitivity parameters y/ : Ry, Ulx.z.p and Ry UIX.Z

Nagar (1959), Theil (1961)



Table of Bounds

U—-D | Rp.yxz€ [BUD’ upl
RI%NUlX X7 < byp RI%NleX X7
U—-Y | Ry.yxpz€ [Byy By
RI%NUlXXI, < byy RI%NXJlXXI,
RI%NUlXX,,ZD < byy RI%NXJlXX,,ZD
U<Z | Ry.zxup € [Byy- Byy]
R22~U|XX < byz R§~X XX
Z—-Y | Ryzxup©E [By. By,
RY~Z|X UD — < by RYNX 1X.X_.Z,UD
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The bounds can be combined in any way.

Cinelli and Hazlett (2020)



Constraints g(0,y) <0

. Direct bounds, e.g. R, ;v € [-0.2,0.4], R%NU‘XZD <0.5

. Assumption: X = (X, X) suchthat U 1L X | X, Z

. . 2 < 2
Comparative bound, e.g. RYNU‘ XXz = 2RY~X]- XX_.Z

The unmeasured confounder U can explain at most twice as much variance in Y than XJ

does - conditional on (X, X_j, /).
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Constraints ¢(0, ) < 0Oand h(0,y) = 0

Sd(YJ_XZD)
- min/max fy_pixz = Ry.yxzp /p~vxz sd(DX7) subject to (1), (2), (3)

2 2
 Bounds: RYNU‘XX 7= 2RYNX ‘XX 7 RDNU‘X,Z & [_0.2, 0.4] (1)
R: . n% s
, (v) TY~UIXX Z
* Ry yixz = 1 — R2 (2)

Y~X|X.X_.Z

(iv) Ry vz — Ryupixz Rp~uix.z
* Ry yixzp = (3)

\/1 o RIZ/ D\XZ\/I RZNU\XZ
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Optimization - Leveraging Monotonicity

» a=Rp_yxz b= Ry.yixzp 4= Ry.yxz

d

e min/max c¢;—b ¢, st ae€[-0.2,0.4], d° < Cy, b =

V1-a? \/1—cg\/1—a2

» Brute force grid search: create three-dimensional grid of (a, b, /)-values

* Adapted grid search:
» For fixed a, b is monotone in ¢ and the objective is monotone in b
* One-dimensional grid of a-values

. O(m?), but often O(m), where m is the number of points per grid dimension
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Data Example

* National Longitudinal Survey of Young Men
* From 1966 until 1981
* 3010 individuals

 Y:log-earnings @

« D: years of schooling

« X: years of labour force experience;
indicators for living in the south, being
black and living in a metropolitan area

« /: growing up close to 4-year college
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Baseline
Covariates

Card (1993)



Sensitivity Analysis

. Partition covariates X: X indicator for being black; X remaining covariates
. Assumption: U 1L X|X,Z

* User specified bounds:

> > 0 0

(B1) RD~U|X,Z = 4RD~X\X,Z (B2) RY~U|X,Z,D < RY~X\X,Z,D
> > > >

BIR; g <SOSR x5 BHRy zxup SO1R, o0 up
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Things | did not talk about

. Extension of the R*-calculus to Hilbert spaces

* Multiple unmeasured confounders
» Confidence statements: Sensitivity intervals via bootstrap

e Additional visualization tools
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Conclusion

* New Framework: Sensitivity analysis as optimization problem

. Introduction of the R*-calculus

 Sensitivity analysis in linear models with R-values (OLS and TSLS)

* Flexible and interpretable bounds

* Application on a dataset
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Thanks for your attention!

arXiv: https://arxiv.org/abs/2301.00040

Website: https://tobias-freidling.onrender.com
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